On Fuzzy Differential Subordination
Mathematica Moravica, Tome 19 (2015) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The theory of differential subordination was introduced by S.S.Miller and P.T.Mocanu in [2], then developed in many papers. In [1] the authors investigate various subordination results for some subclasses of analytic functions in the unit disc. G.I.Oros and G.Oros define the notion of fuzzy subordination and in [3, 4, 5] they define the notion of fuzzy differential subordination. In this paper, we determine sufficient conditions for a multivalent function to be a dominant of the fuzzy differential subordination.
Mots-clés : Fuzzy set, fuzzy subordination, fuzzy differential subordination, fuzzy best dominant
@article{MM3_2015_19_1_a10,
     author = {A. Haydar E\c{s}},
     title = {On {Fuzzy} {Differential} {Subordination}},
     journal = {Mathematica Moravica},
     pages = {123 - 129},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a10/}
}
TY  - JOUR
AU  - A. Haydar Eş
TI  - On Fuzzy Differential Subordination
JO  - Mathematica Moravica
PY  - 2015
SP  - 123 
EP  -  129
VL  - 19
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a10/
ID  - MM3_2015_19_1_a10
ER  - 
%0 Journal Article
%A A. Haydar Eş
%T On Fuzzy Differential Subordination
%J Mathematica Moravica
%D 2015
%P 123 - 129
%V 19
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a10/
%F MM3_2015_19_1_a10
A. Haydar Eş. On Fuzzy Differential Subordination. Mathematica Moravica, Tome 19 (2015) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a10/