Convergence of Modified S-iteration Process forTwo Generalized Asymptotically Quasi-nonexpansive Mappings in CAT(0) Spaces
Mathematica Moravica, Tome 19 (2015) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we give the sufficient condition of newly defined modified S-iteration process to converge to common fixed point for two generalized asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces. Also we establish some strong convergence theorems of the said iteration process and mappings under suitable conditions. Our results extend and improve many known results from the existing literature.
Mots-clés :
Generalized asymptotically quasi-nonexpansive mapping, strong convergence, modified S-iteration process, common fixed point, CAT(0) space
@article{MM3_2015_19_1_a1, author = {Gurucharan Singh Saluja}, title = {Convergence of {Modified} {S-iteration} {Process} {forTwo} {Generalized} {Asymptotically} {Quasi-nonexpansive} {Mappings} in {CAT(0)} {Spaces}}, journal = {Mathematica Moravica}, pages = {19 - 31}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a1/} }
TY - JOUR AU - Gurucharan Singh Saluja TI - Convergence of Modified S-iteration Process forTwo Generalized Asymptotically Quasi-nonexpansive Mappings in CAT(0) Spaces JO - Mathematica Moravica PY - 2015 SP - 19 EP - 31 VL - 19 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a1/ ID - MM3_2015_19_1_a1 ER -
%0 Journal Article %A Gurucharan Singh Saluja %T Convergence of Modified S-iteration Process forTwo Generalized Asymptotically Quasi-nonexpansive Mappings in CAT(0) Spaces %J Mathematica Moravica %D 2015 %P 19 - 31 %V 19 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a1/ %F MM3_2015_19_1_a1
Gurucharan Singh Saluja. Convergence of Modified S-iteration Process forTwo Generalized Asymptotically Quasi-nonexpansive Mappings in CAT(0) Spaces. Mathematica Moravica, Tome 19 (2015) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a1/