Stability in Nonlinear Neutral Differential Equations with Infinite Delay
Mathematica Moravica, Tome 18 (2014) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we use the contraction mapping theorem to obtain asymptotic stability results of the nonlinear neutral differential equation with infinite delay $\frac{\mathrm{d}}{\mathrm{d}t}x(t) = -a(t) x(t-\tau_{1}(t)) + \frac{\mathrm{d}}{\mathrm{d}t} Q(t, x(t-\tau_{2}(t))) + \int_{-\infty}^{t} D(t,s) f(x(s))\mathrm{d}s$. An asymptotic stability theorem with a necessary and sufficient condition is proved, which improves and generalizes some results due to Burton [6], Zhang [17], Althubiti, Makhzoum, Raffoul [1].
Mots-clés :
Fixed points, Stability, Neutral differential equation, Integral equation, Infinite delay
@article{MM3_2014_18_2_a7, author = {Abdelouaheb Ardjouni and Ahcene Djoudi}, title = {Stability in {Nonlinear} {Neutral} {Differential} {Equations} with {Infinite} {Delay}}, journal = {Mathematica Moravica}, pages = {91 - 103}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a7/} }
TY - JOUR AU - Abdelouaheb Ardjouni AU - Ahcene Djoudi TI - Stability in Nonlinear Neutral Differential Equations with Infinite Delay JO - Mathematica Moravica PY - 2014 SP - 91 EP - 103 VL - 18 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a7/ ID - MM3_2014_18_2_a7 ER -
Abdelouaheb Ardjouni; Ahcene Djoudi. Stability in Nonlinear Neutral Differential Equations with Infinite Delay. Mathematica Moravica, Tome 18 (2014) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a7/