Stability in Nonlinear Neutral Differential Equations with Infinite Delay
Mathematica Moravica, Tome 18 (2014) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we use the contraction mapping theorem to obtain asymptotic stability results of the nonlinear neutral differential equation with infinite delay $\frac{\mathrm{d}}{\mathrm{d}t}x(t) = -a(t) x(t-\tau_{1}(t)) + \frac{\mathrm{d}}{\mathrm{d}t} Q(t, x(t-\tau_{2}(t))) + \int_{-\infty}^{t} D(t,s) f(x(s))\mathrm{d}s$. An asymptotic stability theorem with a necessary and sufficient condition is proved, which improves and generalizes some results due to Burton [6], Zhang [17], Althubiti, Makhzoum, Raffoul [1].
Mots-clés : Fixed points, Stability, Neutral differential equation, Integral equation, Infinite delay
@article{MM3_2014_18_2_a7,
     author = {Abdelouaheb Ardjouni and Ahcene Djoudi},
     title = {Stability in {Nonlinear} {Neutral} {Differential} {Equations} with {Infinite} {Delay}},
     journal = {Mathematica Moravica},
     pages = {91 - 103},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a7/}
}
TY  - JOUR
AU  - Abdelouaheb Ardjouni
AU  - Ahcene Djoudi
TI  - Stability in Nonlinear Neutral Differential Equations with Infinite Delay
JO  - Mathematica Moravica
PY  - 2014
SP  - 91 
EP  -  103
VL  - 18
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a7/
ID  - MM3_2014_18_2_a7
ER  - 
%0 Journal Article
%A Abdelouaheb Ardjouni
%A Ahcene Djoudi
%T Stability in Nonlinear Neutral Differential Equations with Infinite Delay
%J Mathematica Moravica
%D 2014
%P 91 - 103
%V 18
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a7/
%F MM3_2014_18_2_a7
Abdelouaheb Ardjouni; Ahcene Djoudi. Stability in Nonlinear Neutral Differential Equations with Infinite Delay. Mathematica Moravica, Tome 18 (2014) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a7/