Coupled Common Fixed Point Theorems in Partially Ordered G-metric Spaces for Nonlinear Contractions
Mathematica Moravica, Tome 18 (2014) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The aim of this paper is to prove coupled coincidence and coupled common fixed point theorems for a mixed g-monotone mapping satisfying nonlinear contractive conditions in the setting of partially ordered G-metric spaces. Present theorems are true generalizations of the recent results of Choudhury and Maity [Math Comput. Modelling 54 (2011), 73-79], and Luong and Thuan [Math. Comput. Modelling 55 (2012), 1601-1609].
Mots-clés :
Partially ordered set, G-metric space, coupled coincidence point, coupled common fixed point, mixed monotone mappings
@article{MM3_2014_18_2_a4, author = {Manish Jain and Calogero Vetro and Neetu Gupta and Sanjay Kumar}, title = {Coupled {Common} {Fixed} {Point} {Theorems} in {Partially} {Ordered} {G-metric} {Spaces} for {Nonlinear} {Contractions}}, journal = {Mathematica Moravica}, pages = {45 - 62}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a4/} }
TY - JOUR AU - Manish Jain AU - Calogero Vetro AU - Neetu Gupta AU - Sanjay Kumar TI - Coupled Common Fixed Point Theorems in Partially Ordered G-metric Spaces for Nonlinear Contractions JO - Mathematica Moravica PY - 2014 SP - 45 EP - 62 VL - 18 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a4/ ID - MM3_2014_18_2_a4 ER -
%0 Journal Article %A Manish Jain %A Calogero Vetro %A Neetu Gupta %A Sanjay Kumar %T Coupled Common Fixed Point Theorems in Partially Ordered G-metric Spaces for Nonlinear Contractions %J Mathematica Moravica %D 2014 %P 45 - 62 %V 18 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a4/ %F MM3_2014_18_2_a4
Manish Jain; Calogero Vetro; Neetu Gupta; Sanjay Kumar. Coupled Common Fixed Point Theorems in Partially Ordered G-metric Spaces for Nonlinear Contractions. Mathematica Moravica, Tome 18 (2014) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a4/