A Quadruple Fixed Point Theorem for Contractive Type Condition by Using ICS Mapping and Application to Integral Equation
Mathematica Moravica, Tome 18 (2014) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we obtain a Quadruple fixed point theorem for $\psi-\phi$ contractive condition in partially ordered partial metric spaces by using ICS mapping. We are also given an example and an application to integral equation which supports our main theorem.
Mots-clés :
Partial metric space, Quadruple fixed point, ICS mapping, mixed monotone property
@article{MM3_2014_18_2_a2, author = {K.P.R. Rao and G.N.V. Kishore and K.V. Siva Parvathi}, title = {A {Quadruple} {Fixed} {Point} {Theorem} for {Contractive} {Type} {Condition} by {Using} {ICS} {Mapping} and {Application} to {Integral} {Equation}}, journal = {Mathematica Moravica}, pages = {21 - 34}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a2/} }
TY - JOUR AU - K.P.R. Rao AU - G.N.V. Kishore AU - K.V. Siva Parvathi TI - A Quadruple Fixed Point Theorem for Contractive Type Condition by Using ICS Mapping and Application to Integral Equation JO - Mathematica Moravica PY - 2014 SP - 21 EP - 34 VL - 18 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a2/ ID - MM3_2014_18_2_a2 ER -
%0 Journal Article %A K.P.R. Rao %A G.N.V. Kishore %A K.V. Siva Parvathi %T A Quadruple Fixed Point Theorem for Contractive Type Condition by Using ICS Mapping and Application to Integral Equation %J Mathematica Moravica %D 2014 %P 21 - 34 %V 18 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a2/ %F MM3_2014_18_2_a2
K.P.R. Rao; G.N.V. Kishore; K.V. Siva Parvathi. A Quadruple Fixed Point Theorem for Contractive Type Condition by Using ICS Mapping and Application to Integral Equation. Mathematica Moravica, Tome 18 (2014) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2014_18_2_a2/