On Variations of m, n-Totally Projective Abelian p-Groups
Mathematica Moravica, Tome 18 (2014) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We define some new classes of p-torsion Abelian groups which are closely related to the definitions of n-totally projective, strongly n-totally projective and m; n-totally projective groups introduced by P. Keef and P. Danchev in J. Korean Math. Soc. (2013). We also study their critical properties, one of which is the so-named Nunke’s-esque property.
Mots-clés : m, n-simply presented groups, m, n-totally projective groups, nicely m, n-totally projective groups, nicely m, n-co-totally projective groups, nicely m, n-strongly totally projective groups, nicely m, n-co-strongly totally projective groups
@article{MM3_2014_18_1_a4,
     author = {Peter Danchev},
     title = {On {Variations} of m, {n-Totally} {Projective} {Abelian} {p-Groups}},
     journal = {Mathematica Moravica},
     pages = {39 - 53},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2014_18_1_a4/}
}
TY  - JOUR
AU  - Peter Danchev
TI  - On Variations of m, n-Totally Projective Abelian p-Groups
JO  - Mathematica Moravica
PY  - 2014
SP  - 39 
EP  -  53
VL  - 18
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2014_18_1_a4/
ID  - MM3_2014_18_1_a4
ER  - 
%0 Journal Article
%A Peter Danchev
%T On Variations of m, n-Totally Projective Abelian p-Groups
%J Mathematica Moravica
%D 2014
%P 39 - 53
%V 18
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2014_18_1_a4/
%F MM3_2014_18_1_a4
Peter Danchev. On Variations of m, n-Totally Projective Abelian p-Groups. Mathematica Moravica, Tome 18 (2014) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2014_18_1_a4/