Fixed Point Theorems in Probabilistic Metric Spaces Using Property (E.A)
Mathematica Moravica, Tome 17 (2013) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we prove a common fixed point theorem for even number of self mappings in Menger space by using an implicit relation with property (E.A). We also extend our main result to four finite families of mappings employing the notion of pairwise commuting due to Imdad et al. [Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos, Solitons Fractals 42(5) (2009), 3121-3129]. Our results generalize and extend several well known comparable results existing in literature.
Mots-clés : t-norm, probabilistic metric space, property (E.A), weakly compatible mappings, non-compatible mappings, implicit relation
@article{MM3_2013_17_1_a1,
     author = {B.D. Pant and Brian Fisher and Sunny Chauhan},
     title = {Fixed {Point} {Theorems} in {Probabilistic} {Metric} {Spaces} {Using} {Property} {(E.A)}},
     journal = {Mathematica Moravica},
     pages = {11 - 24},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2013_17_1_a1/}
}
TY  - JOUR
AU  - B.D. Pant
AU  - Brian Fisher
AU  - Sunny Chauhan
TI  - Fixed Point Theorems in Probabilistic Metric Spaces Using Property (E.A)
JO  - Mathematica Moravica
PY  - 2013
SP  - 11 
EP  -  24
VL  - 17
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2013_17_1_a1/
ID  - MM3_2013_17_1_a1
ER  - 
%0 Journal Article
%A B.D. Pant
%A Brian Fisher
%A Sunny Chauhan
%T Fixed Point Theorems in Probabilistic Metric Spaces Using Property (E.A)
%J Mathematica Moravica
%D 2013
%P 11 - 24
%V 17
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2013_17_1_a1/
%F MM3_2013_17_1_a1
B.D. Pant; Brian Fisher; Sunny Chauhan. Fixed Point Theorems in Probabilistic Metric Spaces Using Property (E.A). Mathematica Moravica, Tome 17 (2013) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2013_17_1_a1/