General System of Nonconvex Variational Inequalities and Parallel Projection Method
Mathematica Moravica, Tome 16 (2012) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Using the prox-regularity notion, we introduce and study a system of general nonconvex variational inequalities. Using the parallel projection technique, we suggest and analyze a three-step iterative method for this system. We establish a convergence result for the proposed iteration method. We obtain some known results as a particular case.
Mots-clés : System of nonconvex general variational inequality, fixed point problem, parallel algorithm, proximal normal cone, relaxed cocoercive mapping
@article{MM3_2012_16_2_a9,
     author = {Balwant Singh Thakur and Suja Varghese},
     title = {General {System} of {Nonconvex} {Variational} {Inequalities} and {Parallel} {Projection} {Method}},
     journal = {Mathematica Moravica},
     pages = {79 - 87},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a9/}
}
TY  - JOUR
AU  - Balwant Singh Thakur
AU  - Suja Varghese
TI  - General System of Nonconvex Variational Inequalities and Parallel Projection Method
JO  - Mathematica Moravica
PY  - 2012
SP  - 79 
EP  -  87
VL  - 16
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a9/
ID  - MM3_2012_16_2_a9
ER  - 
%0 Journal Article
%A Balwant Singh Thakur
%A Suja Varghese
%T General System of Nonconvex Variational Inequalities and Parallel Projection Method
%J Mathematica Moravica
%D 2012
%P 79 - 87
%V 16
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a9/
%F MM3_2012_16_2_a9
Balwant Singh Thakur; Suja Varghese. General System of Nonconvex Variational Inequalities and Parallel Projection Method. Mathematica Moravica, Tome 16 (2012) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a9/