General System of Nonconvex Variational Inequalities and Parallel Projection Method
Mathematica Moravica, Tome 16 (2012) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Using the prox-regularity notion, we introduce and study a system of general nonconvex variational inequalities. Using the parallel projection technique, we suggest and analyze a three-step iterative method for this system. We establish a convergence result for the proposed iteration method. We obtain some known results as a particular case.
Mots-clés :
System of nonconvex general variational inequality, fixed point problem, parallel algorithm, proximal normal cone, relaxed cocoercive mapping
@article{MM3_2012_16_2_a9, author = {Balwant Singh Thakur and Suja Varghese}, title = {General {System} of {Nonconvex} {Variational} {Inequalities} and {Parallel} {Projection} {Method}}, journal = {Mathematica Moravica}, pages = {79 - 87}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2012}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a9/} }
TY - JOUR AU - Balwant Singh Thakur AU - Suja Varghese TI - General System of Nonconvex Variational Inequalities and Parallel Projection Method JO - Mathematica Moravica PY - 2012 SP - 79 EP - 87 VL - 16 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a9/ ID - MM3_2012_16_2_a9 ER -
Balwant Singh Thakur; Suja Varghese. General System of Nonconvex Variational Inequalities and Parallel Projection Method. Mathematica Moravica, Tome 16 (2012) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a9/