Some Fixed Point Theorems for Certain Contractive Mappings on Metric and Generalized Metric Spaces
Mathematica Moravica, Tome 16 (2012) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper we obtain sufficient conditions for the existence of a unique fixed point of Reich and Rhoades type contractive conditions on generalized, complete, metric spaces dependent on another function. Our results generalize and extend some well-known previous results.
Mots-clés : Fixed point, contractive mapping, sequently convergent, subsequently convergent
@article{MM3_2012_16_2_a8,
     author = {Amit Singh and M.S. Khan and Brian Fisher},
     title = {Some {Fixed} {Point} {Theorems} for {Certain} {Contractive} {Mappings} on {Metric} and {Generalized} {Metric} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {69 - 77},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a8/}
}
TY  - JOUR
AU  - Amit Singh
AU  - M.S. Khan
AU  - Brian Fisher
TI  - Some Fixed Point Theorems for Certain Contractive Mappings on Metric and Generalized Metric Spaces
JO  - Mathematica Moravica
PY  - 2012
SP  - 69 
EP  -  77
VL  - 16
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a8/
ID  - MM3_2012_16_2_a8
ER  - 
%0 Journal Article
%A Amit Singh
%A M.S. Khan
%A Brian Fisher
%T Some Fixed Point Theorems for Certain Contractive Mappings on Metric and Generalized Metric Spaces
%J Mathematica Moravica
%D 2012
%P 69 - 77
%V 16
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a8/
%F MM3_2012_16_2_a8
Amit Singh; M.S. Khan; Brian Fisher. Some Fixed Point Theorems for Certain Contractive Mappings on Metric and Generalized Metric Spaces. Mathematica Moravica, Tome 16 (2012) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2012_16_2_a8/