The Axiom of Infinite Choice
Mathematica Moravica, Tome 16 (2012) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we present the Axiom of Infinite Choice: Given any set P, there exist at least countable choice functions or there exist at least finite choice functions. This paper continues the study of the Axiom of Choice by E. Zermelo [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. Annalen, 65 (1908), 107-128; translated in van Heijenoort 1967, 183-198], and by M. Tasković [The axiom of choice, fixed point theorems, and inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897-904]. Fredholm and Leray-Schauder alternatives are two direct consequences of the Axiom of Infinite Choice.
Mots-clés : The Axiom of Infinite Choice, The Axiom of Choice, Zermelo’s Axiom of Choice, Lemma of Infinite Maximality, Zorn’s lemma, Restatements of the Axiom of Infinite Choice, Choice functions, Foundation of the Fixed Point Theory, Geometry of the Axiom of Infinite Choice, Axioms of Infinite Choice for Points and Apices
@article{MM3_2012_16_1_a0,
     author = {Milan Taskovi\'c},
     title = {The {Axiom} of {Infinite} {Choice}},
     journal = {Mathematica Moravica},
     pages = {1 - 32},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2012_16_1_a0/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - The Axiom of Infinite Choice
JO  - Mathematica Moravica
PY  - 2012
SP  - 1 
EP  -  32
VL  - 16
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2012_16_1_a0/
ID  - MM3_2012_16_1_a0
ER  - 
%0 Journal Article
%A Milan Tasković
%T The Axiom of Infinite Choice
%J Mathematica Moravica
%D 2012
%P 1 - 32
%V 16
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2012_16_1_a0/
%F MM3_2012_16_1_a0
Milan Tasković. The Axiom of Infinite Choice. Mathematica Moravica, Tome 16 (2012) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2012_16_1_a0/