Principles of Transpose in the Fixed Point Theory for Cone Metric Spaces
Mathematica Moravica, Tome 15 (2011) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This paper presents new principles of transpose in the fixed point theory as for example: Let $X$ be a nonempty set and let $\mathfrak{C}$ be an arbitrary formula which contains terms $x,y \in X$, $\leq$, $+$, $\preccurlyeq$, $\oplus$, $T: X \to X$, and $\rho$. Then, as assertion of the form: For every $T$ and for every $\rho(x,y)\in \mathbb{R}_{+}^{0} := [0,+\infty)$ the following fact (A) $\qquad \mathfrak{C}(x,y\in X,\leq, +, T, \rho)$ implies $T$ has a fixed point is a theorem if and only if the assertion of the form: For every $T$ and for every $\rho(x,y)\in C$, where $C$ is a cone of the set $G$ of all cones, the following fact in the form (TA) $\qquad \mathfrak{C}(x,y\in X, \preccurlyeq, T, \rho)$ implies $T$ has a fixed point is a theorem. Applications of the principles of transpose in nonlinear functional analysis and fixed point theory are numerous.
Mots-clés : Coincidence points, common fixed points, cone metric spaces, Principles of Transpose, Banach’s contraction principle, numerical and nonnumerical distances, characterizations of contractive mappings, Banach’s mappings, nonnumerical transversals
@article{MM3_2011_15_2_a7,
     author = {Milan Taskovi\'c},
     title = {Principles of {Transpose} in the {Fixed} {Point} {Theory} for {Cone} {Metric} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {55 - 63},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2011_15_2_a7/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - Principles of Transpose in the Fixed Point Theory for Cone Metric Spaces
JO  - Mathematica Moravica
PY  - 2011
SP  - 55 
EP  -  63
VL  - 15
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2011_15_2_a7/
ID  - MM3_2011_15_2_a7
ER  - 
%0 Journal Article
%A Milan Tasković
%T Principles of Transpose in the Fixed Point Theory for Cone Metric Spaces
%J Mathematica Moravica
%D 2011
%P 55 - 63
%V 15
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2011_15_2_a7/
%F MM3_2011_15_2_a7
Milan Tasković. Principles of Transpose in the Fixed Point Theory for Cone Metric Spaces. Mathematica Moravica, Tome 15 (2011) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2011_15_2_a7/