Lower Compact Operators and Applications
Mathematica Moravica, Tome 15 (2011) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we consider a concept of lower compact operators in lower transversal normed spaces. In this sense we obtain the basic statements for lower compact operators. Applications in nonlinear functional analysis are considered. This paper gives sufficient conditions for new solutions of Peano's differential equation in the class of all lower continuous mappings. In this sense, this paper presents new fixed point theorems of Schauder type on lower transversal spaces. For the lower transversal space $(X,\rho)$ are essential the mappings $T: X\to X$ which are unbounded variation, i.e., if $\sum_{n=0}^{\infty} \rho(T^{n}x, T^{n+1}x) = +\infty$ for arbitrary $x\in X$. On the other hand, for upper transversal spaces are essential the mappings $T: X\to X$ which are bounded variation.
Mots-clés : Lower compact operators, compact operators, Leray-Schauder alternative, Schauder’s 54th problem
@article{MM3_2011_15_1_a9,
     author = {Milan Taskovi\'c},
     title = {Lower {Compact} {Operators} and {Applications}},
     journal = {Mathematica Moravica},
     pages = {65 - 88},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a9/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - Lower Compact Operators and Applications
JO  - Mathematica Moravica
PY  - 2011
SP  - 65 
EP  -  88
VL  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a9/
ID  - MM3_2011_15_1_a9
ER  - 
%0 Journal Article
%A Milan Tasković
%T Lower Compact Operators and Applications
%J Mathematica Moravica
%D 2011
%P 65 - 88
%V 15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a9/
%F MM3_2011_15_1_a9
Milan Tasković. Lower Compact Operators and Applications. Mathematica Moravica, Tome 15 (2011) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a9/