Singer Orthogonality and James Orthogonality in the So-Called Quasi-Inner Product Space
Mathematica Moravica, Tome 15 (2011) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this note we prove that, in a quasi-inner product space, S-orthogonality and J-orthogonality can be defined with the best approximations.
Mots-clés : Singer orthogonality, James orthogonality, quasi-inner product space
@article{MM3_2011_15_1_a6,
     author = {Pavle Mili\v{c}i\'c},
     title = {Singer {Orthogonality} and {James} {Orthogonality} in the {So-Called} {Quasi-Inner} {Product} {Space}},
     journal = {Mathematica Moravica},
     pages = {49 - 52},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a6/}
}
TY  - JOUR
AU  - Pavle Miličić
TI  - Singer Orthogonality and James Orthogonality in the So-Called Quasi-Inner Product Space
JO  - Mathematica Moravica
PY  - 2011
SP  - 49 
EP  -  52
VL  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a6/
ID  - MM3_2011_15_1_a6
ER  - 
%0 Journal Article
%A Pavle Miličić
%T Singer Orthogonality and James Orthogonality in the So-Called Quasi-Inner Product Space
%J Mathematica Moravica
%D 2011
%P 49 - 52
%V 15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a6/
%F MM3_2011_15_1_a6
Pavle Miličić. Singer Orthogonality and James Orthogonality in the So-Called Quasi-Inner Product Space. Mathematica Moravica, Tome 15 (2011) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2011_15_1_a6/