Transversal Spring Spaces, the Equation $x = T(x,\dots,x)$ and Applications
Mathematica Moravica, Tome 14 (2010) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper continues the study of the transversal spaces. In this sense we formulate a new structure of spaces which we call it transversal (upper, lower, or middle) spring spaces. Also, we consider problems of the fixed point theory on transversal spring spaces. In connection with this, we give some solutions for the equation $x = T(x,\dots,x)$. This paper presents an extended asymptotic fixed point theory.
Mots-clés :
General ecart, distance, Fréchet's spaces, Kurepa's spaces, Menger's spaces, transversal spaces, transversal intervally spaces, middle transversal intervally spaces, transverse, bisection functions, fixed points, transversal chaos spaces, asymptotic fixed point point theory, transversal spaces with nonnumerical transverse, asymptotic behaviour in springs of spaces, transversal spring spaces, middle transversal spring spaces, the equation $x = T(x;\dots;x)$, Kuratowski’s question, Tasković’s spaces
@article{MM3_2010_14_2_a4, author = {Milan Taskovi\'c}, title = {Transversal {Spring} {Spaces,} the {Equation} $x = T(x,\dots,x)$ and {Applications}}, journal = {Mathematica Moravica}, pages = {99 - 124}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2010}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2010_14_2_a4/} }
Milan Tasković. Transversal Spring Spaces, the Equation $x = T(x,\dots,x)$ and Applications. Mathematica Moravica, Tome 14 (2010) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2010_14_2_a4/