Transversal Theory of Fixed Point, Fixed Apices, and Forked Points
Mathematica Moravica, Tome 14 (2010) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper on topological spaces we formulate new monotone principles of fixed point, forked point and fixed apex. This
text continues the further study of the paper by M. R. Tasković [A monotone principle of fixed points, Proc. Amer. Math. Soc., 94 (1985), 427-432, Lemma 2 and Theorem 2]. New monotone principles to include some recent results of author, which contains, as special cases, some results of S. Banach, J. Dugundji and A. Granas, F. Browder, D. W. Boyd and J. S. Wong, J. Caristi, T. L. Hicks and B. E. Rhoades, B. Fisher, S. Massa, Ð. Kurepa, M. Kwapisz, W. Kirk, S. Park, M. Krasnoselskij, V. J. Stečenko, T. Kiventidis, I. Rus, K. Iséki, J. Walter, J. Daneš, A. Meir and E. Keeler, L. Collatz, J. Istrăţescu, A. Miczko, and B. Palczewski, C. S. Wong, and many others.
Mots-clés :
TCS-convergence, topological spaces, metric spaces, nonlinear conditions of contractions, fixed apex, nonnumerical transverses, completeness, fixed points, forked points, controlling function, Principle of Transpose, transversal spaces
@article{MM3_2010_14_2_a3, author = {Milan Taskovi\'c}, title = {Transversal {Theory} of {Fixed} {Point,} {Fixed} {Apices,} and {Forked} {Points}}, journal = {Mathematica Moravica}, pages = {19 - 97}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2010}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2010_14_2_a3/} }
Milan Tasković. Transversal Theory of Fixed Point, Fixed Apices, and Forked Points. Mathematica Moravica, Tome 14 (2010) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2010_14_2_a3/