The $\gamma$-open Open Topology for Function Spaces
Mathematica Moravica, Tome 14 (2010) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we have introduced the notion of $\gamma$-open open topology and proved some properties which the topology does possess. We have also introduced the concept of convergence of nets in $\gamma H(X)$ (where $\gamma H(X)$ is the set of all self $\gamma$-homeomorphisms on a topological space $X$) and showed when $\gamma H(X)$ is complete.
Mots-clés : $\gamma$-open sets, $\gamma$-open open topology, $\gamma H(X)$-the set of all self $\gamma$-homeomorphisms on $X$, $\gamma$-convergence, $\gamma$-regular
@article{MM3_2010_14_1_a6,
     author = {S. Ganguly and Ritu Sen},
     title = {The $\gamma$-open {Open} {Topology} for {Function} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {61 - 67},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a6/}
}
TY  - JOUR
AU  - S. Ganguly
AU  - Ritu Sen
TI  - The $\gamma$-open Open Topology for Function Spaces
JO  - Mathematica Moravica
PY  - 2010
SP  - 61 
EP  -  67
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a6/
ID  - MM3_2010_14_1_a6
ER  - 
%0 Journal Article
%A S. Ganguly
%A Ritu Sen
%T The $\gamma$-open Open Topology for Function Spaces
%J Mathematica Moravica
%D 2010
%P 61 - 67
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a6/
%F MM3_2010_14_1_a6
S. Ganguly; Ritu Sen. The $\gamma$-open Open Topology for Function Spaces. Mathematica Moravica, Tome 14 (2010) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a6/