Some Equalities which Hold in the (n,m)-Group (Q,A) for $n\geq 2m$
Mathematica Moravica, Tome 14 (2010) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we have proved two equalities which hold in an $(n,m)$-group $(Q,A)$ for $n\geq 2m$. The first of them is a generalization of the equality $(a\cdot b)^{-1} = b^{-1}\cdot a^{-1}$, which holds in the binary group $(Q,\cdot)$. The second of them is equality $A(x_{1}^{m}, b_{1}^{n-2m}, y_{1}^{m}) = A\bigl(A(x_{1}^{m}, a_{1}^{n-2m}, (a_{1}^{n-2m}, e(b_{1}^{n-2m}))^{-1}), a_{1}^{n-2m}, y_{1}^{m}\bigr)$.
Mots-clés : (n;m)-group, {1, n − m + 1}-neutral operation, inverse operation of the (n;m)-groupoid
@article{MM3_2010_14_1_a4,
     author = {Radoslav Gali\'c and Anita Kati\'c},
     title = {Some {Equalities} which {Hold} in the {(n,m)-Group} {(Q,A)} for $n\geq 2m$},
     journal = {Mathematica Moravica},
     pages = {47 - 51},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a4/}
}
TY  - JOUR
AU  - Radoslav Galić
AU  - Anita Katić
TI  - Some Equalities which Hold in the (n,m)-Group (Q,A) for $n\geq 2m$
JO  - Mathematica Moravica
PY  - 2010
SP  - 47 
EP  -  51
VL  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a4/
ID  - MM3_2010_14_1_a4
ER  - 
%0 Journal Article
%A Radoslav Galić
%A Anita Katić
%T Some Equalities which Hold in the (n,m)-Group (Q,A) for $n\geq 2m$
%J Mathematica Moravica
%D 2010
%P 47 - 51
%V 14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a4/
%F MM3_2010_14_1_a4
Radoslav Galić; Anita Katić. Some Equalities which Hold in the (n,m)-Group (Q,A) for $n\geq 2m$. Mathematica Moravica, Tome 14 (2010) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a4/