The Matrix Transformations on Double Sequence Space of $\chi_{\pi}^{2}$
Mathematica Moravica, Tome 14 (2010) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\chi^{2}$ denote the space of all prime sense double gai sequences and $\Lambda^{2}$ the space of all prime sense double analytic sequences. First we show that the set $E = \{s^{(mn)}: m,n = 1, 2, 3, \dots\}$ is a determining set for $\chi_{\pi}^{2}$. The set of all finite matrices transforming $\chi_{\pi}^{2}$ into FK-space $Y$ denoted by $(\chi_{\pi}^{2}: Y)$. We characterize the classes $(\chi_{\pi}^{2}: Y)$ when $Y = c_{0}^{2}, c^{2}, \chi^{2}, l^{2}, \Lambda^{2}$.
But the approach to obtain these result in the present paper is by determining set for $\chi_{\pi}^{2}$. First, we investigate a determining set for $\chi_{\pi}^{2}$ and then we characterize the classes of matrix transformations involving $\chi_{\pi}^{2}$ and other known sequence spaces.
Mots-clés :
Determining set, gai sequence, analytic sequence, double sequence
@article{MM3_2010_14_1_a12, author = {Nagarajan Subramanian and U.K. Misra}, title = {The {Matrix} {Transformations} on {Double} {Sequence} {Space} of $\chi_{\pi}^{2}$}, journal = {Mathematica Moravica}, pages = {121 - 127}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a12/} }
TY - JOUR AU - Nagarajan Subramanian AU - U.K. Misra TI - The Matrix Transformations on Double Sequence Space of $\chi_{\pi}^{2}$ JO - Mathematica Moravica PY - 2010 SP - 121 EP - 127 VL - 14 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a12/ ID - MM3_2010_14_1_a12 ER -
Nagarajan Subramanian; U.K. Misra. The Matrix Transformations on Double Sequence Space of $\chi_{\pi}^{2}$. Mathematica Moravica, Tome 14 (2010) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2010_14_1_a12/