Set Integral Equations in Metric Spaces
Mathematica Moravica, Tome 13 (2009) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $P_{cp,cv}(\mathbb{R}^{n})$ be the family of all nonempty compact, convex subsets of $\mathbb{R}^{n}$. We consider the following set integral equations: (1) $X(t) = \int_{a}^{b} K(t,s,X(s))\mathrm{d}s + X_{0}$, (2) $X(t) = \int_{a}^{t} K(t,s,X(s))\mathrm{d}s + X_{0}$, where $K: [a, b] \times [a, b] \times P_{cp,cv}(\mathbb{R}^{n}) \to P_{cp,cv}(\mathbb{R}^{n})$ and $X_{0}\in P_{cp,cv}(\mathbb{R}^{n})$.
The purpose of the paper is to study the existence and data dependence of the solutions of the set integral equations (1) and (2), by using a fixed point approach. Our results generalize and extend the results given in [2]. For other similar results see [3] and [4].
Mots-clés :
Fixed point, set integral equation, Pompeiu-Hausdorff metric
@article{MM3_2009_13_1_a8, author = {Ioana Ti\c{s}e}, title = {Set {Integral} {Equations} in {Metric} {Spaces}}, journal = {Mathematica Moravica}, pages = {95 - 102}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2009_13_1_a8/} }
Ioana Tişe. Set Integral Equations in Metric Spaces. Mathematica Moravica, Tome 13 (2009) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2009_13_1_a8/