Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ Mutually Tangent Circles
Mathematica Moravica, Tome 12 (2008) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this article is given the formula for radius of circle $K_{n}$, where in sequence $\{K_{j}\}$, four circles $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$, for all $n\geq 3$, are mutually tangent. Radius $r_{n}$ is expressed in terms of radii $r_{1}$, $r_{2}$, $r_{3}$.
Mots-clés : sequences of circles, arbelos, Pappus chain
@article{MM3_2008_12_2_a4,
     author = {Milorad Stevanovi\'c},
     title = {Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ {Mutually} {Tangent} {Circles}},
     journal = {Mathematica Moravica},
     pages = {35 - 43},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2008_12_2_a4/}
}
TY  - JOUR
AU  - Milorad Stevanović
TI  - Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ Mutually Tangent Circles
JO  - Mathematica Moravica
PY  - 2008
SP  - 35 
EP  -  43
VL  - 12
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2008_12_2_a4/
ID  - MM3_2008_12_2_a4
ER  - 
%0 Journal Article
%A Milorad Stevanović
%T Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ Mutually Tangent Circles
%J Mathematica Moravica
%D 2008
%P 35 - 43
%V 12
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2008_12_2_a4/
%F MM3_2008_12_2_a4
Milorad Stevanović. Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ Mutually Tangent Circles. Mathematica Moravica, Tome 12 (2008) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2008_12_2_a4/