Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ Mutually Tangent Circles
Mathematica Moravica, Tome 12 (2008) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this article is given the formula for radius of circle $K_{n}$, where in sequence $\{K_{j}\}$, four circles $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$, for all $n\geq 3$, are mutually tangent. Radius $r_{n}$ is expressed in terms of radii $r_{1}$, $r_{2}$, $r_{3}$.
Mots-clés :
sequences of circles, arbelos, Pappus chain
@article{MM3_2008_12_2_a4, author = {Milorad Stevanovi\'c}, title = {Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ {Mutually} {Tangent} {Circles}}, journal = {Mathematica Moravica}, pages = {35 - 43}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2008_12_2_a4/} }
Milorad Stevanović. Sequence with $K_{1}$, $K_{2}$, $K_{n}$, $K_{n+1}$ Mutually Tangent Circles. Mathematica Moravica, Tome 12 (2008) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2008_12_2_a4/