The Main Eigenvalues of the Seidel Matrix
Mathematica Moravica, Tome 12 (2008) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a simple graph with vertex set $V(G)$ and $(0,1)$-adjacency matrix $A$. As usual, $A^{\ast}(G) = J-I-2A$ denotes the Seidel matrix of the graph $G$. The eigenvalue $\lambda$ of $A$ is said to be a main eigenvalue of $G$ if the eigenspace $\varepsilon(\lambda)$ is not orthogonal to the all-1 vector $\mathbf{e}$. In this paper, relations between the main eigenvalues and associated eigenvectors of adjacency matrix and Seidel matrix of a graph are investigated.
Mots-clés : Graph spectra, Main eigenvalues, Seidel matrix
@article{MM3_2008_12_1_a7,
     author = {Houqing Zhou},
     title = {The {Main} {Eigenvalues} of the {Seidel} {Matrix}},
     journal = {Mathematica Moravica},
     pages = {111 - 116},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a7/}
}
TY  - JOUR
AU  - Houqing Zhou
TI  - The Main Eigenvalues of the Seidel Matrix
JO  - Mathematica Moravica
PY  - 2008
SP  - 111 
EP  -  116
VL  - 12
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a7/
ID  - MM3_2008_12_1_a7
ER  - 
%0 Journal Article
%A Houqing Zhou
%T The Main Eigenvalues of the Seidel Matrix
%J Mathematica Moravica
%D 2008
%P 111 - 116
%V 12
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a7/
%F MM3_2008_12_1_a7
Houqing Zhou. The Main Eigenvalues of the Seidel Matrix. Mathematica Moravica, Tome 12 (2008) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a7/