The Main Eigenvalues of the Seidel Matrix
Mathematica Moravica, Tome 12 (2008) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a simple graph with vertex set $V(G)$ and $(0,1)$-adjacency matrix $A$. As usual, $A^{\ast}(G) = J-I-2A$ denotes the Seidel matrix of the graph $G$. The eigenvalue $\lambda$ of $A$ is said to be a main eigenvalue of $G$ if the eigenspace $\varepsilon(\lambda)$ is not orthogonal to the all-1 vector $\mathbf{e}$. In this paper, relations between the main eigenvalues and associated eigenvectors of adjacency matrix and Seidel matrix of a graph are investigated.
Mots-clés :
Graph spectra, Main eigenvalues, Seidel matrix
@article{MM3_2008_12_1_a7, author = {Houqing Zhou}, title = {The {Main} {Eigenvalues} of the {Seidel} {Matrix}}, journal = {Mathematica Moravica}, pages = {111 - 116}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a7/} }
Houqing Zhou. The Main Eigenvalues of the Seidel Matrix. Mathematica Moravica, Tome 12 (2008) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a7/