Common Fixed Point Theorems for Finite Number of Mappings without Continuity and Compatibility on Fuzzy Metric Spaces
Mathematica Moravica, Tome 12 (2008) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The aim of this paper is to prove some common fixed point theorems for finite number of discontinuous, noncompatible mappings on noncomplete fuzzy metric spaces. We improve extend and generalize several fixed point theorems on metric spaces, uniform spaces and fuzzy metric spaces. We also give formulas for total number of commutativity conditions for finite number of mappings.
Mots-clés : Fuzzy metric spaces, Noncompatible mappings, Common fixed points
@article{MM3_2008_12_1_a5,
     author = {Sushil Sharma and Bhavana Deshpande},
     title = {Common {Fixed} {Point} {Theorems} for {Finite} {Number} of {Mappings} without {Continuity} and {Compatibility} on {Fuzzy} {Metric} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {43 - 61},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a5/}
}
TY  - JOUR
AU  - Sushil Sharma
AU  - Bhavana Deshpande
TI  - Common Fixed Point Theorems for Finite Number of Mappings without Continuity and Compatibility on Fuzzy Metric Spaces
JO  - Mathematica Moravica
PY  - 2008
SP  - 43 
EP  -  61
VL  - 12
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a5/
ID  - MM3_2008_12_1_a5
ER  - 
%0 Journal Article
%A Sushil Sharma
%A Bhavana Deshpande
%T Common Fixed Point Theorems for Finite Number of Mappings without Continuity and Compatibility on Fuzzy Metric Spaces
%J Mathematica Moravica
%D 2008
%P 43 - 61
%V 12
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a5/
%F MM3_2008_12_1_a5
Sushil Sharma; Bhavana Deshpande. Common Fixed Point Theorems for Finite Number of Mappings without Continuity and Compatibility on Fuzzy Metric Spaces. Mathematica Moravica, Tome 12 (2008) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2008_12_1_a5/