L-Ultrafilters, L-Sets and LC-Property
Mathematica Moravica, Tome 11 (2007) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An L-filter base, L-filter, L-ultrafilter is a filter base, filter, ultrafilter consisting exclusively of Lindelöf sets. In this paper we consider L-filters (ultrafilters) and LC-property. A space X is LC − space if every Lindelöf set in X has the compact closure in X. A locally compact space X is LC − space if and only if every L-ultrafilter on X converges. We also consider L-points, L-sets and LC-extensions.
Mots-clés : L-set, LC-space, LC-extensions
@article{MM3_2007_11_1_a8,
     author = {Du\v{s}an Milovan\v{c}evi\'c},
     title = {L-Ultrafilters, {L-Sets} and {LC-Property}},
     journal = {Mathematica Moravica},
     pages = {69 - 78},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2007},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2007_11_1_a8/}
}
TY  - JOUR
AU  - Dušan Milovančević
TI  - L-Ultrafilters, L-Sets and LC-Property
JO  - Mathematica Moravica
PY  - 2007
SP  - 69 
EP  -  78
VL  - 11
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2007_11_1_a8/
ID  - MM3_2007_11_1_a8
ER  - 
%0 Journal Article
%A Dušan Milovančević
%T L-Ultrafilters, L-Sets and LC-Property
%J Mathematica Moravica
%D 2007
%P 69 - 78
%V 11
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2007_11_1_a8/
%F MM3_2007_11_1_a8
Dušan Milovančević. L-Ultrafilters, L-Sets and LC-Property. Mathematica Moravica, Tome 11 (2007) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2007_11_1_a8/