L-Ultrafilters, L-Sets and LC-Property
Mathematica Moravica, Tome 11 (2007) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
An L-filter base, L-filter, L-ultrafilter is a filter base, filter, ultrafilter consisting exclusively of Lindelöf sets. In this paper we consider L-filters (ultrafilters) and LC-property. A space X is LC − space if every Lindelöf set in X has the compact closure in X. A locally compact space X is LC − space if and only if every L-ultrafilter on X converges. We also consider L-points, L-sets and LC-extensions.
Mots-clés :
L-set, LC-space, LC-extensions
@article{MM3_2007_11_1_a8, author = {Du\v{s}an Milovan\v{c}evi\'c}, title = {L-Ultrafilters, {L-Sets} and {LC-Property}}, journal = {Mathematica Moravica}, pages = {69 - 78}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2007}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2007_11_1_a8/} }
Dušan Milovančević. L-Ultrafilters, L-Sets and LC-Property. Mathematica Moravica, Tome 11 (2007) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2007_11_1_a8/