Fixed Point Theorems for Two Pairs of Nonself Mappings in Metrically Convex Spaces by Altering Distances
Mathematica Moravica, Tome 10 (2006) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Some common fixed point theorems for two pairs of nonself mappings in complete metrically convex metric spaces are proved by altering distances between the points which generalize earlier results due to Khan et al. [15], Khan and Bharadwaj [14], Bianchini [5], Chatterjea [6] and others. Some related results are also discussed besides furnishing an illustrative example.
Mots-clés : Metrically convex metric space, weak commutativity, compatible mappings, coincidentally commuting mappings, complete metric spaces
@article{MM3_2006_10_1_a3,
     author = {Mohd Imdad and Ladlay Khan},
     title = {Fixed {Point} {Theorems} for {Two} {Pairs} of {Nonself} {Mappings} in {Metrically} {Convex} {Spaces} by {Altering} {Distances}},
     journal = {Mathematica Moravica},
     pages = {27 - 40},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a3/}
}
TY  - JOUR
AU  - Mohd Imdad
AU  - Ladlay Khan
TI  - Fixed Point Theorems for Two Pairs of Nonself Mappings in Metrically Convex Spaces by Altering Distances
JO  - Mathematica Moravica
PY  - 2006
SP  - 27 
EP  -  40
VL  - 10
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a3/
ID  - MM3_2006_10_1_a3
ER  - 
%0 Journal Article
%A Mohd Imdad
%A Ladlay Khan
%T Fixed Point Theorems for Two Pairs of Nonself Mappings in Metrically Convex Spaces by Altering Distances
%J Mathematica Moravica
%D 2006
%P 27 - 40
%V 10
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a3/
%F MM3_2006_10_1_a3
Mohd Imdad; Ladlay Khan. Fixed Point Theorems for Two Pairs of Nonself Mappings in Metrically Convex Spaces by Altering Distances. Mathematica Moravica, Tome 10 (2006) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a3/