n−Groups $(n > 3)$ as Algebras of the Type $\langle n, n − 2, n − 2 \rangle$ With Four Laws
Mathematica Moravica, Tome 10 (2006) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this article n−groups $(n > 3)$ are described as algebras of the type $\langle n, n − 2, n − 2 \rangle$ with four laws.
Mots-clés :
n−semigroup, n−quasigroup, n−group, {i, j}−neutral operation on n−groupoid
@article{MM3_2006_10_1_a11, author = {Janez U\v{s}an and Mali\v{s}a \v{Z}i\v{z}ovi\'c}, title = {n\ensuremath{-}Groups $(n > 3)$ as {Algebras} of the {Type} $\langle n, n \ensuremath{-} 2, n \ensuremath{-} 2 \rangle$ {With} {Four} {Laws}}, journal = {Mathematica Moravica}, pages = {101 - 106}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2006}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a11/} }
TY - JOUR AU - Janez Ušan AU - Mališa Žižović TI - n−Groups $(n > 3)$ as Algebras of the Type $\langle n, n − 2, n − 2 \rangle$ With Four Laws JO - Mathematica Moravica PY - 2006 SP - 101 EP - 106 VL - 10 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a11/ ID - MM3_2006_10_1_a11 ER -
Janez Ušan; Mališa Žižović. n−Groups $(n > 3)$ as Algebras of the Type $\langle n, n − 2, n − 2 \rangle$ With Four Laws. Mathematica Moravica, Tome 10 (2006) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a11/