n−Groups $(n > 3)$ as Algebras of the Type $\langle n, n − 2, n − 2 \rangle$ With Four Laws
Mathematica Moravica, Tome 10 (2006) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this article n−groups $(n > 3)$ are described as algebras of the type $\langle n, n − 2, n − 2 \rangle$ with four laws.
Mots-clés : n−semigroup, n−quasigroup, n−group, {i, j}−neutral operation on n−groupoid
@article{MM3_2006_10_1_a11,
     author = {Janez U\v{s}an and Mali\v{s}a \v{Z}i\v{z}ovi\'c},
     title = {n\ensuremath{-}Groups $(n > 3)$ as {Algebras} of the {Type} $\langle n, n \ensuremath{-} 2, n \ensuremath{-} 2 \rangle$ {With} {Four} {Laws}},
     journal = {Mathematica Moravica},
     pages = {101 - 106},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a11/}
}
TY  - JOUR
AU  - Janez Ušan
AU  - Mališa Žižović
TI  - n−Groups $(n > 3)$ as Algebras of the Type $\langle n, n − 2, n − 2 \rangle$ With Four Laws
JO  - Mathematica Moravica
PY  - 2006
SP  - 101 
EP  -  106
VL  - 10
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a11/
ID  - MM3_2006_10_1_a11
ER  - 
%0 Journal Article
%A Janez Ušan
%A Mališa Žižović
%T n−Groups $(n > 3)$ as Algebras of the Type $\langle n, n − 2, n − 2 \rangle$ With Four Laws
%J Mathematica Moravica
%D 2006
%P 101 - 106
%V 10
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a11/
%F MM3_2006_10_1_a11
Janez Ušan; Mališa Žižović. n−Groups $(n > 3)$ as Algebras of the Type $\langle n, n − 2, n − 2 \rangle$ With Four Laws. Mathematica Moravica, Tome 10 (2006) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2006_10_1_a11/