The Multiple Summation Formula and Polylogarithms
Mathematica Moravica, Tome 9 (2005) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper is given the formula: \[F_{n}(x) = um_{k_{1}=1}^{ıfty}\frac{x^{k_{1}}}{k_{1}}um_{k_{2}=1}^{k_{1}}\frac{x^{k_{2}}}{k_{2}}\cdots um_{k_{n}=1}^{k_{n-1}}\frac{x^{k_{n}}}{k_{n}} = um_{um_{j=1}^{n}j\cdotlpha_{j}=n, lpha_{j}\geq 0} \frac{rod_{k=1}^{n}\zeta_{k}^{lpha_{k}}(x^{k})}{rod_{k=1}^{n}k_{lpha_{k}}lpha_{k}!}\] \[n\geq 1,\quad -1eq x 1\] with \[\zeta_{k}(x) \equiv Li_{k}(x)\equiv um_{r=1}^{ıfty}\frac{x^{r}}{r^{k}},\qquad (k\geq 0),\] and method by which it can be obtained.
Mots-clés : multiple sums, multiple summation, polylogarithms
@article{MM3_2005_9_1_a8,
     author = {Milorad Stevanovi\'c},
     title = {The {Multiple} {Summation} {Formula} and {Polylogarithms}},
     journal = {Mathematica Moravica},
     pages = {59 - 67},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a8/}
}
TY  - JOUR
AU  - Milorad Stevanović
TI  - The Multiple Summation Formula and Polylogarithms
JO  - Mathematica Moravica
PY  - 2005
SP  - 59 
EP  -  67
VL  - 9
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a8/
ID  - MM3_2005_9_1_a8
ER  - 
%0 Journal Article
%A Milorad Stevanović
%T The Multiple Summation Formula and Polylogarithms
%J Mathematica Moravica
%D 2005
%P 59 - 67
%V 9
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a8/
%F MM3_2005_9_1_a8
Milorad Stevanović. The Multiple Summation Formula and Polylogarithms. Mathematica Moravica, Tome 9 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a8/