The Multiple Summation Formula and Polylogarithms
Mathematica Moravica, Tome 9 (2005) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper is given the formula:
\[F_{n}(x) = um_{k_{1}=1}^{ıfty}\frac{x^{k_{1}}}{k_{1}}um_{k_{2}=1}^{k_{1}}\frac{x^{k_{2}}}{k_{2}}\cdots um_{k_{n}=1}^{k_{n-1}}\frac{x^{k_{n}}}{k_{n}} = um_{um_{j=1}^{n}j\cdotlpha_{j}=n,
lpha_{j}\geq 0} \frac{rod_{k=1}^{n}\zeta_{k}^{lpha_{k}}(x^{k})}{rod_{k=1}^{n}k_{lpha_{k}}lpha_{k}!}\] \[n\geq 1,\quad -1eq x 1\] with \[\zeta_{k}(x) \equiv Li_{k}(x)\equiv um_{r=1}^{ıfty}\frac{x^{r}}{r^{k}},\qquad (k\geq 0),\] and method by which it can be obtained.
Mots-clés :
multiple sums, multiple summation, polylogarithms
@article{MM3_2005_9_1_a8, author = {Milorad Stevanovi\'c}, title = {The {Multiple} {Summation} {Formula} and {Polylogarithms}}, journal = {Mathematica Moravica}, pages = {59 - 67}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2005}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a8/} }
Milorad Stevanović. The Multiple Summation Formula and Polylogarithms. Mathematica Moravica, Tome 9 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a8/