On m-Quasi-Irresolute Functions
Mathematica Moravica, Tome 9 (2005) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we introduce a new notion of m-quasi irresolute functions as functions from a set satisfying some minimal conditions into a topological space. We obtain some characterizations and several properties of such functions. This function lead us to the formulation of a unified theory of $(\theta, s)$-continuity [26], $\alpha$-quasi irresolute [24], weakly $\theta$-irresolute [19], $\theta$-irresolute [27], $\beta$-quasi irresolute [23].
Mots-clés : m-structure, $(\theta, s)$-continuous, $\alpha$-quasi-irresolute, weakly $\theta$-irresolute, $\beta$-quasi-irresolute, m-compact, S-closed, m-quasi-closed graph
@article{MM3_2005_9_1_a5,
     author = {Takashi Noiri and Valeriu Popa},
     title = {On {m-Quasi-Irresolute} {Functions}},
     journal = {Mathematica Moravica},
     pages = {25 - 41},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a5/}
}
TY  - JOUR
AU  - Takashi Noiri
AU  - Valeriu Popa
TI  - On m-Quasi-Irresolute Functions
JO  - Mathematica Moravica
PY  - 2005
SP  - 25 
EP  -  41
VL  - 9
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a5/
ID  - MM3_2005_9_1_a5
ER  - 
%0 Journal Article
%A Takashi Noiri
%A Valeriu Popa
%T On m-Quasi-Irresolute Functions
%J Mathematica Moravica
%D 2005
%P 25 - 41
%V 9
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a5/
%F MM3_2005_9_1_a5
Takashi Noiri; Valeriu Popa. On m-Quasi-Irresolute Functions. Mathematica Moravica, Tome 9 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a5/