On m-Quasi-Irresolute Functions
Mathematica Moravica, Tome 9 (2005) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we introduce a new notion of m-quasi irresolute functions as functions from a set satisfying some minimal conditions into a topological space. We obtain some characterizations and several properties of such functions. This function lead us to the formulation of a unified theory of $(\theta, s)$-continuity [26], $\alpha$-quasi irresolute [24], weakly $\theta$-irresolute [19], $\theta$-irresolute [27], $\beta$-quasi irresolute [23].
Mots-clés :
m-structure, $(\theta, s)$-continuous, $\alpha$-quasi-irresolute, weakly $\theta$-irresolute, $\beta$-quasi-irresolute, m-compact, S-closed, m-quasi-closed graph
@article{MM3_2005_9_1_a5, author = {Takashi Noiri and Valeriu Popa}, title = {On {m-Quasi-Irresolute} {Functions}}, journal = {Mathematica Moravica}, pages = {25 - 41}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2005}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a5/} }
Takashi Noiri; Valeriu Popa. On m-Quasi-Irresolute Functions. Mathematica Moravica, Tome 9 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a5/