Fixed Point Theorem on $F_{\Lambda}$-orbitally Complete Normed Spaces
Mathematica Moravica, Tome 9 (2005) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let X be a normed space and $x_0 \in X$. In this paper we proves the convergence of a convex sequence $x_n = \lambda x_{n−1} +(1−\lambda)f(x_{n−1})$, $\lambda \in (0, 1)$, to the fixed point of the $f$, where $f : X \to X$ is the nonexpansive completely continuous operator, which satisfies some nonexpansive conditions.
Mots-clés : Convex sequence, fixed point, $f_{\lambda}$-orbitally complete space
@article{MM3_2005_9_1_a4,
     author = {Branislav Mijajlovi\'c},
     title = {Fixed {Point} {Theorem} on $F_{\Lambda}$-orbitally {Complete} {Normed} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {21 - 24},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a4/}
}
TY  - JOUR
AU  - Branislav Mijajlović
TI  - Fixed Point Theorem on $F_{\Lambda}$-orbitally Complete Normed Spaces
JO  - Mathematica Moravica
PY  - 2005
SP  - 21 
EP  -  24
VL  - 9
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a4/
ID  - MM3_2005_9_1_a4
ER  - 
%0 Journal Article
%A Branislav Mijajlović
%T Fixed Point Theorem on $F_{\Lambda}$-orbitally Complete Normed Spaces
%J Mathematica Moravica
%D 2005
%P 21 - 24
%V 9
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a4/
%F MM3_2005_9_1_a4
Branislav Mijajlović. Fixed Point Theorem on $F_{\Lambda}$-orbitally Complete Normed Spaces. Mathematica Moravica, Tome 9 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a4/