Fixed Point Theorem on $F_{\Lambda}$-orbitally Complete Normed Spaces
Mathematica Moravica, Tome 9 (2005) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let X be a normed space and $x_0 \in X$. In this paper we proves the convergence of a convex sequence $x_n = \lambda x_{n−1} +(1−\lambda)f(x_{n−1})$, $\lambda \in (0, 1)$, to the fixed point of the $f$, where $f : X \to X$ is the nonexpansive completely continuous operator, which satisfies some nonexpansive conditions.
Mots-clés :
Convex sequence, fixed point, $f_{\lambda}$-orbitally complete space
@article{MM3_2005_9_1_a4, author = {Branislav Mijajlovi\'c}, title = {Fixed {Point} {Theorem} on $F_{\Lambda}$-orbitally {Complete} {Normed} {Spaces}}, journal = {Mathematica Moravica}, pages = {21 - 24}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2005}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a4/} }
Branislav Mijajlović. Fixed Point Theorem on $F_{\Lambda}$-orbitally Complete Normed Spaces. Mathematica Moravica, Tome 9 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2005_9_1_a4/