Fixed Points of Some Classes of Nonexpansive Mappings
Mathematica Moravica, Tome 8 (2004) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we proves the convergence of a convex sequence $x_n = \lambda x_{n−1} + (1 −\lambda )f(x_{n−1})$, $\lambda \in (0, 1)$, to a fixed point of the nonexpansive completely continuous operator in the normed $f_{\lambda}$-orbitally complete spaces with $\lambda$-uniformly convex sphere. Further we shall prove some fixed point theorems of the star-shaped sets.
Mots-clés : Normed $f_{\lambda}$-orbitally complete spaces with $\lambda$-uniformly convex sphere, Nonexpansive operator, $\lambda$-orbit, Fixed point, Extremal point, Star-shaped sets
@article{MM3_2004_8_1_a4,
     author = {Branislav Mijajlovi\'c},
     title = {Fixed {Points} of {Some} {Classes} of {Nonexpansive} {Mappings}},
     journal = {Mathematica Moravica},
     pages = {25 - 31},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a4/}
}
TY  - JOUR
AU  - Branislav Mijajlović
TI  - Fixed Points of Some Classes of Nonexpansive Mappings
JO  - Mathematica Moravica
PY  - 2004
SP  - 25 
EP  -  31
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a4/
ID  - MM3_2004_8_1_a4
ER  - 
%0 Journal Article
%A Branislav Mijajlović
%T Fixed Points of Some Classes of Nonexpansive Mappings
%J Mathematica Moravica
%D 2004
%P 25 - 31
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a4/
%F MM3_2004_8_1_a4
Branislav Mijajlović. Fixed Points of Some Classes of Nonexpansive Mappings. Mathematica Moravica, Tome 8 (2004) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a4/