A Note on $\lambda_2$ and $\lambda_n2$ of a Graph
Mathematica Moravica, Tome 8 (2004) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Using the eigenvalues and eigenvectors of a graph G, it was established the upper bound for the second eigenvalue $\lambda_2$ and the least eigenvalue $\lambda_n2$ [1]. In this work using only the eigenvalues of G we obtain the upper bound for $\lambda_2$ and $\lambda_n$.
Mots-clés :
geometric inequalities, fundamental inequalities of triangle, Gerretsen’s inequalities
@article{MM3_2004_8_1_a2, author = {Mirjana Lazi\'c}, title = {A {Note} on $\lambda_2$ and $\lambda_n2$ of a {Graph}}, journal = {Mathematica Moravica}, pages = {11 - 14}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2004}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a2/} }
Mirjana Lazić. A Note on $\lambda_2$ and $\lambda_n2$ of a Graph. Mathematica Moravica, Tome 8 (2004) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a2/