A Note on $\lambda_2$ and $\lambda_n2$ of a Graph
Mathematica Moravica, Tome 8 (2004) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Using the eigenvalues and eigenvectors of a graph G, it was established the upper bound for the second eigenvalue $\lambda_2$ and the least eigenvalue $\lambda_n2$ [1]. In this work using only the eigenvalues of G we obtain the upper bound for $\lambda_2$ and $\lambda_n$.
Mots-clés : geometric inequalities, fundamental inequalities of triangle, Gerretsen’s inequalities
@article{MM3_2004_8_1_a2,
     author = {Mirjana Lazi\'c},
     title = {A {Note} on $\lambda_2$ and $\lambda_n2$ of a {Graph}},
     journal = {Mathematica Moravica},
     pages = {11 - 14},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a2/}
}
TY  - JOUR
AU  - Mirjana Lazić
TI  - A Note on $\lambda_2$ and $\lambda_n2$ of a Graph
JO  - Mathematica Moravica
PY  - 2004
SP  - 11 
EP  -  14
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a2/
ID  - MM3_2004_8_1_a2
ER  - 
%0 Journal Article
%A Mirjana Lazić
%T A Note on $\lambda_2$ and $\lambda_n2$ of a Graph
%J Mathematica Moravica
%D 2004
%P 11 - 14
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a2/
%F MM3_2004_8_1_a2
Mirjana Lazić. A Note on $\lambda_2$ and $\lambda_n2$ of a Graph. Mathematica Moravica, Tome 8 (2004) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a2/