New Generalizations of Caristi’s Fixed Point Theorem Via Brézis–Browder Principle
Mathematica Moravica, Tome 8 (2004) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, some generalizations of Caristi’s fixed point theorem are obtained via the Brézis–Browder principle: Theorems 2.1, 2.2, 3.1, and 3.2.
Mots-clés : fixed point, Caristi’s theorem, Brézis–Browder principle, orbit, lower semicontinuous functions
@article{MM3_2004_8_1_a0,
     author = {Temistocle B{\^\i}rsan},
     title = {New {Generalizations} of {Caristi{\textquoteright}s} {Fixed} {Point} {Theorem} {Via} {Br\'ezis{\textendash}Browder} {Principle}},
     journal = {Mathematica Moravica},
     pages = {1 - 5},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a0/}
}
TY  - JOUR
AU  - Temistocle Bîrsan
TI  - New Generalizations of Caristi’s Fixed Point Theorem Via Brézis–Browder Principle
JO  - Mathematica Moravica
PY  - 2004
SP  - 1 
EP  -  5
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a0/
ID  - MM3_2004_8_1_a0
ER  - 
%0 Journal Article
%A Temistocle Bîrsan
%T New Generalizations of Caristi’s Fixed Point Theorem Via Brézis–Browder Principle
%J Mathematica Moravica
%D 2004
%P 1 - 5
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a0/
%F MM3_2004_8_1_a0
Temistocle Bîrsan. New Generalizations of Caristi’s Fixed Point Theorem Via Brézis–Browder Principle. Mathematica Moravica, Tome 8 (2004) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2004_8_1_a0/