Infinitely Distributive Elements in Posets
Mathematica Moravica, Tome 7 (2003) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Infinitely distributive and codistributive elements in posets are studied. It is proved that an element a in a poset P has these properties if and only if the image of a has the corresponding properties in the Dedekind MacNeille completion of P. An application of the order theoretical results to a poset of weak congruences is presented.
Mots-clés : infinite distributive, elements, infinite codistributive elements, congruence, $\omega$-stable, complete congruence
@article{MM3_2003_7_1_a4,
     author = {Vera Lazarevi\'c and Andreja Tepav\v{c}evi\'c},
     title = {Infinitely {Distributive} {Elements} in {Posets}},
     journal = {Mathematica Moravica},
     pages = {23 - 32},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a4/}
}
TY  - JOUR
AU  - Vera Lazarević
AU  - Andreja Tepavčević
TI  - Infinitely Distributive Elements in Posets
JO  - Mathematica Moravica
PY  - 2003
SP  - 23 
EP  -  32
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a4/
ID  - MM3_2003_7_1_a4
ER  - 
%0 Journal Article
%A Vera Lazarević
%A Andreja Tepavčević
%T Infinitely Distributive Elements in Posets
%J Mathematica Moravica
%D 2003
%P 23 - 32
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a4/
%F MM3_2003_7_1_a4
Vera Lazarević; Andreja Tepavčević. Infinitely Distributive Elements in Posets. Mathematica Moravica, Tome 7 (2003) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a4/