Fixed Points on Transversal Edges Spaces
Mathematica Moravica, Tome 7 (2003) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we formulate a new structure of spaces which we call it edges (upper or lower) transversal spaces. Also, in this sense, we describe a class of conditions sufficient for the existence of a fixed point on edges (upper or lower) transversal spaces.
Mots-clés : Transversal spaces, Edges (upper or lower) transversal spaces, Fréchet's spaces, fixed point theorems, diametral $\varphi$-contraction, upper (or lower) edges contraction, edges (upper or lower) continuous, method of successive approximations
@article{MM3_2003_7_1_a14,
     author = {Milan Taskovi\'c},
     title = {Fixed {Points} on {Transversal} {Edges} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {175 - 186},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a14/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - Fixed Points on Transversal Edges Spaces
JO  - Mathematica Moravica
PY  - 2003
SP  - 175 
EP  -  186
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a14/
ID  - MM3_2003_7_1_a14
ER  - 
%0 Journal Article
%A Milan Tasković
%T Fixed Points on Transversal Edges Spaces
%J Mathematica Moravica
%D 2003
%P 175 - 186
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a14/
%F MM3_2003_7_1_a14
Milan Tasković. Fixed Points on Transversal Edges Spaces. Mathematica Moravica, Tome 7 (2003) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a14/