An Extension of Baire's Category Theorem to Relator Spaces
Mathematica Moravica, Tome 7 (2003) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

As a particular case of a more general result, we show that if $\mathcal{R}$ is a topological, topologically filtered, topologically regular relator on $X$ such that $\mathcal{R}$ is either topologically relatively locally sequentially compact, or uniformly countable and properly sequentially convergence-adherence complete, then $\mathcal{R}$ is a Baire relator. If $X$ is a nonvoid set, then by a relator $\mathcal{R}$ on $X$ we mean a nonvoid family of binary relations on $X$. The relator $\mathcal{R}$ is called a Baire relator if the fat subsets of the relator space $X(\mathcal{R})$ are not meager. A subset $A$ of $X(\mathcal{R})$ is called fat if $\mathrm{int}_{\mathcal{R}}(A)\neq\emptyset.$ While, the set $A$ is called meager if it is a countable union of rare (nowhere dense) sets.
Mots-clés : Generalized uniformities, Baire's category theorem
@article{MM3_2003_7_1_a10,
     author = {\'Arp\'ad Sz\'az},
     title = {An {Extension} of {Baire's} {Category} {Theorem} to {Relator} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {73 - 89},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a10/}
}
TY  - JOUR
AU  - Árpád Száz
TI  - An Extension of Baire's Category Theorem to Relator Spaces
JO  - Mathematica Moravica
PY  - 2003
SP  - 73 
EP  -  89
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a10/
ID  - MM3_2003_7_1_a10
ER  - 
%0 Journal Article
%A Árpád Száz
%T An Extension of Baire's Category Theorem to Relator Spaces
%J Mathematica Moravica
%D 2003
%P 73 - 89
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a10/
%F MM3_2003_7_1_a10
Árpád Száz. An Extension of Baire's Category Theorem to Relator Spaces. Mathematica Moravica, Tome 7 (2003) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a10/