Weak Asymptotic Equivalence Relation and Inverse Functions in the Class OR
Mathematica Moravica, Tome 7 (2003) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $f(x)$ is a continuous, strictly increasing and unbounded function defined on an interval $[a,+\infty)$, $(a>0)$, in this paper we shall prove that $f^{-1}(x)$, $(x\geq a)$ belongs to the Karamata class OR of all $\mathcal{O}$-regularly varying functions, if and only if for every function $g(x)$, $(x\geq a)$, which satisfies $f(x) \asymp g(x)$ as $x\to\infty$, we have $f^{-1}(x) \asymp g^{-1}(x)$ as $x\to +\infty$. Here, $\asymp$ is the weak asymptotic equivalence relation. We shall also prove some variants of the previous theorem, in which, except the weak, we also deal with the strong asymptotic equivalence relation.
Mots-clés : Regular variation, Asymptotic equivalence, Inversion
@article{MM3_2003_7_1_a0,
     author = {Dragan {\DJ}ur\v{c}i\'c and Aleksandar Torga\v{s}ev},
     title = {Weak {Asymptotic} {Equivalence} {Relation} and {Inverse} {Functions} in the {Class} {OR}},
     journal = {Mathematica Moravica},
     pages = {1 - 6},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a0/}
}
TY  - JOUR
AU  - Dragan Đurčić
AU  - Aleksandar Torgašev
TI  - Weak Asymptotic Equivalence Relation and Inverse Functions in the Class OR
JO  - Mathematica Moravica
PY  - 2003
SP  - 1 
EP  -  6
VL  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a0/
ID  - MM3_2003_7_1_a0
ER  - 
%0 Journal Article
%A Dragan Đurčić
%A Aleksandar Torgašev
%T Weak Asymptotic Equivalence Relation and Inverse Functions in the Class OR
%J Mathematica Moravica
%D 2003
%P 1 - 6
%V 7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a0/
%F MM3_2003_7_1_a0
Dragan Đurčić; Aleksandar Torgašev. Weak Asymptotic Equivalence Relation and Inverse Functions in the Class OR. Mathematica Moravica, Tome 7 (2003) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a0/