Weak Asymptotic Equivalence Relation and Inverse Functions in the Class OR
Mathematica Moravica, Tome 7 (2003) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $f(x)$ is a continuous, strictly increasing and unbounded function defined on an interval $[a,+\infty)$, $(a>0)$, in this paper we shall prove that $f^{-1}(x)$, $(x\geq a)$ belongs to the Karamata class OR of all $\mathcal{O}$-regularly varying functions, if and only if for every function $g(x)$, $(x\geq a)$, which satisfies $f(x) \asymp g(x)$ as $x\to\infty$, we have $f^{-1}(x) \asymp g^{-1}(x)$ as $x\to +\infty$. Here, $\asymp$ is the weak asymptotic equivalence relation. We shall also prove some variants of the previous theorem, in which, except the weak, we also deal with the strong asymptotic equivalence relation.
Mots-clés :
Regular variation, Asymptotic equivalence, Inversion
@article{MM3_2003_7_1_a0, author = {Dragan {\DJ}ur\v{c}i\'c and Aleksandar Torga\v{s}ev}, title = {Weak {Asymptotic} {Equivalence} {Relation} and {Inverse} {Functions} in the {Class} {OR}}, journal = {Mathematica Moravica}, pages = {1 - 6}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2003}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a0/} }
Dragan Đurčić; Aleksandar Torgašev. Weak Asymptotic Equivalence Relation and Inverse Functions in the Class OR. Mathematica Moravica, Tome 7 (2003) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2003_7_1_a0/