Diametral Contractive Mappings in Reflexive Banach Spaces
Mathematica Moravica, Tome 6 (2002) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper it is proved that if $ is a nonempty-bounded closed convex subset of a reflexive Banach space X and if K has normal structure, then any diametral contractive mapping T on K into itself has a fixed point.
Mots-clés :
reflexive Banach spaces, normal structure, Šmulian property, Browder-Göhde-Kirk theorem, diametral contractive mappings, fixed points
@article{MM3_2002_6_1_a9, author = {Milan Taskovi\'c}, title = {Diametral {Contractive} {Mappings} in {Reflexive} {Banach} {Spaces}}, journal = {Mathematica Moravica}, pages = {103 - 108}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2002}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a9/} }
Milan Tasković. Diametral Contractive Mappings in Reflexive Banach Spaces. Mathematica Moravica, Tome 6 (2002) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a9/