Diametral Contractive Mappings in Reflexive Banach Spaces
Mathematica Moravica, Tome 6 (2002) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper it is proved that if $ is a nonempty-bounded closed convex subset of a reflexive Banach space X and if K has normal structure, then any diametral contractive mapping T on K into itself has a fixed point.
Mots-clés : reflexive Banach spaces, normal structure, Šmulian property, Browder-Göhde-Kirk theorem, diametral contractive mappings, fixed points
@article{MM3_2002_6_1_a9,
     author = {Milan Taskovi\'c},
     title = {Diametral {Contractive} {Mappings} in {Reflexive} {Banach} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {103 - 108},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a9/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - Diametral Contractive Mappings in Reflexive Banach Spaces
JO  - Mathematica Moravica
PY  - 2002
SP  - 103 
EP  -  108
VL  - 6
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a9/
ID  - MM3_2002_6_1_a9
ER  - 
%0 Journal Article
%A Milan Tasković
%T Diametral Contractive Mappings in Reflexive Banach Spaces
%J Mathematica Moravica
%D 2002
%P 103 - 108
%V 6
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a9/
%F MM3_2002_6_1_a9
Milan Tasković. Diametral Contractive Mappings in Reflexive Banach Spaces. Mathematica Moravica, Tome 6 (2002) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a9/