Note on n-Groups
Mathematica Moravica, Tome 6 (2002) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Among the results of the paper is the following proposition. Let $n\geq 3$ and let $(Q,A)$ be an n-grupoid. Then: $(Q,A)$ is an n-group iff there are mappings $\alpha$ and $\beta$, respectively, of the sets $Q^{n-2}$ and $Q$ into the set $Q$ such that the laws $A(A(x_{1}^{n}),x_{n+1}^{2n-1}) = A(x_{1},A(x_{2}^{n+1}),x_{n+2}^{2n-1})$, $\beta A(x_{1}^{n}) = A(x_{1}^{n-1},\beta(x_{n})) = A(x_{1}^{n-2},\beta(x_{n-1}),x_{n})$, $A(x,a_{1}^{n-2},\alpha(a_{1}^{n-2})) = A(b_{1}^{n-2},\alpha(b_{1}^{n-2}),x)$ and $\beta A(x,c_{1}^{n-2},\alpha(c_{1}^{n-2})) = x$ hold in the algebra $(Q,\{A,\alpha,\beta\})$ [:3.1].
Mots-clés : n-semigroup, n-quasigroup, n-group, {1;n}-neutral operation on n-groupoid, central operation on n-group
@article{MM3_2002_6_1_a14,
     author = {Janez U\v{s}an and Mali\v{s}a \v{Z}i\v{z}ovi\'c},
     title = {Note on {n-Groups}},
     journal = {Mathematica Moravica},
     pages = {137 - 144},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a14/}
}
TY  - JOUR
AU  - Janez Ušan
AU  - Mališa Žižović
TI  - Note on n-Groups
JO  - Mathematica Moravica
PY  - 2002
SP  - 137 
EP  -  144
VL  - 6
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a14/
ID  - MM3_2002_6_1_a14
ER  - 
%0 Journal Article
%A Janez Ušan
%A Mališa Žižović
%T Note on n-Groups
%J Mathematica Moravica
%D 2002
%P 137 - 144
%V 6
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a14/
%F MM3_2002_6_1_a14
Janez Ušan; Mališa Žižović. Note on n-Groups. Mathematica Moravica, Tome 6 (2002) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a14/