Note on Congruence Classes of n-Groups
Mathematica Moravica, Tome 6 (2002) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the paper the following proposition is proved. Let $(Q,A)$ be an n-group, $|Q|\in N\setminus\{1\}$, and let $n\geq 3$. Further on, let $\Theta$ be an arbitrary congruence of the $n$-group $(Q, A)$ and let $C_{t}$ be an arbitrary class from the set $Q/\Theta$. Then there is a $k\in N$ such that the pair $(C_{t},\overset{k}{A})$ is a $(k(n-1)+l)$-subgroup of the $(k(n-1)+l)$-group $(A,\overset{k}{A})$.
Mots-clés :
n-semigroup, n-quasigroup, n-group
@article{MM3_2002_6_1_a13, author = {Janez U\v{s}an}, title = {Note on {Congruence} {Classes} of {n-Groups}}, journal = {Mathematica Moravica}, pages = {131 - 135}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2002}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a13/} }
Janez Ušan. Note on Congruence Classes of n-Groups. Mathematica Moravica, Tome 6 (2002) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a13/