Note on Congruence Classes of n-Groups
Mathematica Moravica, Tome 6 (2002) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the paper the following proposition is proved. Let $(Q,A)$ be an n-group, $|Q|\in N\setminus\{1\}$, and let $n\geq 3$. Further on, let $\Theta$ be an arbitrary congruence of the $n$-group $(Q, A)$ and let $C_{t}$ be an arbitrary class from the set $Q/\Theta$. Then there is a $k\in N$ such that the pair $(C_{t},\overset{k}{A})$ is a $(k(n-1)+l)$-subgroup of the $(k(n-1)+l)$-group $(A,\overset{k}{A})$.
Mots-clés : n-semigroup, n-quasigroup, n-group
@article{MM3_2002_6_1_a13,
     author = {Janez U\v{s}an},
     title = {Note on {Congruence} {Classes} of {n-Groups}},
     journal = {Mathematica Moravica},
     pages = {131 - 135},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a13/}
}
TY  - JOUR
AU  - Janez Ušan
TI  - Note on Congruence Classes of n-Groups
JO  - Mathematica Moravica
PY  - 2002
SP  - 131 
EP  -  135
VL  - 6
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a13/
ID  - MM3_2002_6_1_a13
ER  - 
%0 Journal Article
%A Janez Ušan
%T Note on Congruence Classes of n-Groups
%J Mathematica Moravica
%D 2002
%P 131 - 135
%V 6
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a13/
%F MM3_2002_6_1_a13
Janez Ušan. Note on Congruence Classes of n-Groups. Mathematica Moravica, Tome 6 (2002) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a13/