One Characterization of Near-P-Polyagroup
Mathematica Moravica, Tome 6 (2002) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper the following proposition is proved. Let $k>l$, $s>1$, $n = k \cdot s + 1$ and let $(Q, A)$ be an n-groupoid. Then, $(Q, A)$ is an near-P-polyagroup (briefly: NP-polyagroup) of the type $(s,n-1)$ iff for some $i\in\bigl\{t\cdot s+l\mid t\in\{1,\dots,k-1\}\bigr\}$ the following conditions hold: (a) the $\langle i-s, i\rangle$ - associative law holds in $(Q, A)$; (b) the $\langle i,i+s\rangle$ - associative law holds in $(Q, A)$; and (c) for every $a_{1}^{n}\in Q$ there is exactly one $x\in Q$ such that the following equality holds $A(a_{1}^{i-1},x,a_{i}^{n-1}) = a_{n}$.
Mots-clés : n-groupoid;n-semigroup, n-quasigroup, Ps-associative n-groupoid, P-polyagroup, NP-polyagroup
@article{MM3_2002_6_1_a12,
     author = {Janez U\v{s}an},
     title = {One {Characterization} of {Near-P-Polyagroup}},
     journal = {Mathematica Moravica},
     pages = {127 - 130},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a12/}
}
TY  - JOUR
AU  - Janez Ušan
TI  - One Characterization of Near-P-Polyagroup
JO  - Mathematica Moravica
PY  - 2002
SP  - 127 
EP  -  130
VL  - 6
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a12/
ID  - MM3_2002_6_1_a12
ER  - 
%0 Journal Article
%A Janez Ušan
%T One Characterization of Near-P-Polyagroup
%J Mathematica Moravica
%D 2002
%P 127 - 130
%V 6
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a12/
%F MM3_2002_6_1_a12
Janez Ušan. One Characterization of Near-P-Polyagroup. Mathematica Moravica, Tome 6 (2002) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2002_6_1_a12/