A Comment on (n, m)–Groups for $n\geq 3m$
Mathematica Moravica, Tome 5 (2001) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the present paper the following proposition is proved. Let $n\geq 3m$ and let $(Q,A)$ be an $(n, m)$-groupoid. Then, $(Q,A)$ is an $(n, m)$-group if for some $i\in \{m + 1,\dots, n − 2m + 1\}$ the following conditions hold: (a) the $\langle i − 1,i\rangle$-associative law holds in $(Q,A)$; (b) the $\langle i, i + 1\rangle$-associative law holds in $(Q,A)$; and (c) for every $a_{1}^{n}\in Q$ there is exactly one $x_{1}^{m}\in Q$ such that the following equality holds $A(a_{1}^{i-1}, x_{1}^{m}, a_{i}^{n−m}) = a_{n-m+1}^{n}$.
Mots-clés :
(n, m)-groupoids, (n, m)-semigroupoids, (n, m)-semigroup, (n, m)-group
@article{MM3_2001_5_1_a9, author = {Janez U\v{s}an}, title = {A {Comment} on (n, {m){\textendash}Groups} for $n\geq 3m$}, journal = {Mathematica Moravica}, pages = {159 - 162}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a9/} }
Janez Ušan. A Comment on (n, m)–Groups for $n\geq 3m$. Mathematica Moravica, Tome 5 (2001) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a9/