A Comment on (n, m)–Groups for $n\geq 3m$
Mathematica Moravica, Tome 5 (2001) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper the following proposition is proved. Let $n\geq 3m$ and let $(Q,A)$ be an $(n, m)$-groupoid. Then, $(Q,A)$ is an $(n, m)$-group if for some $i\in \{m + 1,\dots, n − 2m + 1\}$ the following conditions hold: (a) the $\langle i − 1,i\rangle$-associative law holds in $(Q,A)$; (b) the $\langle i, i + 1\rangle$-associative law holds in $(Q,A)$; and (c) for every $a_{1}^{n}\in Q$ there is exactly one $x_{1}^{m}\in Q$ such that the following equality holds $A(a_{1}^{i-1}, x_{1}^{m}, a_{i}^{n−m}) = a_{n-m+1}^{n}$.
Mots-clés : (n, m)-groupoids, (n, m)-semigroupoids, (n, m)-semigroup, (n, m)-group
@article{MM3_2001_5_1_a9,
     author = {Janez U\v{s}an},
     title = {A {Comment} on (n, {m){\textendash}Groups} for $n\geq 3m$},
     journal = {Mathematica Moravica},
     pages = {159 - 162},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a9/}
}
TY  - JOUR
AU  - Janez Ušan
TI  - A Comment on (n, m)–Groups for $n\geq 3m$
JO  - Mathematica Moravica
PY  - 2001
SP  - 159 
EP  -  162
VL  - 5
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a9/
ID  - MM3_2001_5_1_a9
ER  - 
%0 Journal Article
%A Janez Ušan
%T A Comment on (n, m)–Groups for $n\geq 3m$
%J Mathematica Moravica
%D 2001
%P 159 - 162
%V 5
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a9/
%F MM3_2001_5_1_a9
Janez Ušan. A Comment on (n, m)–Groups for $n\geq 3m$. Mathematica Moravica, Tome 5 (2001) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a9/