Dynamics on $(P_{cp}(X), H_{d})$ Generated by a Finite Family of Multi-valued Operators on $(X, d)$
Mathematica Moravica, Tome 5 (2001) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The main purpose of this paper is to give some partial answers to the following problem: If $F_i$, $i\in\{1,\dots,m\}$ is a finite family of weakly Picard multi-valued operators, is the operator
Mots-clés : Weakly Picard operator, Hausdorff-Pompeiu generalized functional, generalized contraction
@article{MM3_2001_5_1_a5,
     author = {Adrian Petru\c{s}el and Ioan Rus},
     title = {Dynamics on $(P_{cp}(X), H_{d})$ {Generated} by a {Finite} {Family} of {Multi-valued} {Operators} on $(X, d)$},
     journal = {Mathematica Moravica},
     pages = {103 - 110},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a5/}
}
TY  - JOUR
AU  - Adrian Petruşel
AU  - Ioan Rus
TI  - Dynamics on $(P_{cp}(X), H_{d})$ Generated by a Finite Family of Multi-valued Operators on $(X, d)$
JO  - Mathematica Moravica
PY  - 2001
SP  - 103 
EP  -  110
VL  - 5
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a5/
ID  - MM3_2001_5_1_a5
ER  - 
%0 Journal Article
%A Adrian Petruşel
%A Ioan Rus
%T Dynamics on $(P_{cp}(X), H_{d})$ Generated by a Finite Family of Multi-valued Operators on $(X, d)$
%J Mathematica Moravica
%D 2001
%P 103 - 110
%V 5
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a5/
%F MM3_2001_5_1_a5
Adrian Petruşel; Ioan Rus. Dynamics on $(P_{cp}(X), H_{d})$ Generated by a Finite Family of Multi-valued Operators on $(X, d)$. Mathematica Moravica, Tome 5 (2001) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a5/