Dynamics on $(P_{cp}(X), H_{d})$ Generated by a Finite Family of Multi-valued Operators on $(X, d)$
Mathematica Moravica, Tome 5 (2001) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The main purpose of this paper is to give some partial answers to the following problem: If $F_i$, $i\in\{1,\dots,m\}$ is a finite family of weakly Picard multi-valued operators, is the operator
Mots-clés :
Weakly Picard operator, Hausdorff-Pompeiu generalized functional, generalized contraction
@article{MM3_2001_5_1_a5, author = {Adrian Petru\c{s}el and Ioan Rus}, title = {Dynamics on $(P_{cp}(X), H_{d})$ {Generated} by a {Finite} {Family} of {Multi-valued} {Operators} on $(X, d)$}, journal = {Mathematica Moravica}, pages = {103 - 110}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a5/} }
TY - JOUR AU - Adrian Petruşel AU - Ioan Rus TI - Dynamics on $(P_{cp}(X), H_{d})$ Generated by a Finite Family of Multi-valued Operators on $(X, d)$ JO - Mathematica Moravica PY - 2001 SP - 103 EP - 110 VL - 5 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a5/ ID - MM3_2001_5_1_a5 ER -
Adrian Petruşel; Ioan Rus. Dynamics on $(P_{cp}(X), H_{d})$ Generated by a Finite Family of Multi-valued Operators on $(X, d)$. Mathematica Moravica, Tome 5 (2001) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2001_5_1_a5/