On Eigenvalues and Main Eigenvalues of a Graph
Mathematica Moravica, Tome 4 (2000) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a simple graph of order $n$ and let $\lambda_{1}\geq \lambda_{2}\geq \cdots \geq\lambda_{n}$ and $\lambda_{1}^{\ast}\geq\lambda_{2}^{\ast}\cdots \geq\lambda_{n}^{\ast}$ be its eigenvalues with respect to the ordinary adjacency matrix $A=A(G)$ and the Seidel adjacency matrix $A^{\ast}=A^{\ast}(G)$, respectively. Using the Courant-Weyl inequalities we prove that $\bar{\lambda}_{n+1-i}\in [-\lambda_{i}-1,-\lambda_{i+1}-1]$ and $\lambda_{n+1-i}^{\ast}\in [-2\lambda_{i}-1,-2\lambda_{i+1}-1]$ for $i=1,2,\dots,n-1$, where $\bar{\lambda}_{i}$ are the eigenvalues of its complement $\bar{G}$. Besides, if $G$ and $H$ are two switching equivalent graphs, the we find $\lambda_{i}(G)\in[\lambda_{i+1}(H),\lambda_{i-1}(H)]$ for $i=2,3,\dots,n-1$. Next, let $\mu_{1},\mu_{2},\dots,\mu_{k}$ and $\bar{\mu}_{1},\bar{\mu}_{2},\dots,\bar{\mu}_{k}$ denote the main eigenvalues of the graph $G$ and the complementary graph $\bar{G}$, respectively. In this paper we also prove $\sum_{i=1}^{k}(\mu_{i}+\bar{mu}_{i}) = n-k$.
Mots-clés : Graph, eigenvalue, main eigenvalue
@article{MM3_2000_4_1_a7,
     author = {Mirko Lepovi\'c},
     title = {On {Eigenvalues} and {Main} {Eigenvalues} of a {Graph}},
     journal = {Mathematica Moravica},
     pages = {51 - 58},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a7/}
}
TY  - JOUR
AU  - Mirko Lepović
TI  - On Eigenvalues and Main Eigenvalues of a Graph
JO  - Mathematica Moravica
PY  - 2000
SP  - 51 
EP  -  58
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a7/
ID  - MM3_2000_4_1_a7
ER  - 
%0 Journal Article
%A Mirko Lepović
%T On Eigenvalues and Main Eigenvalues of a Graph
%J Mathematica Moravica
%D 2000
%P 51 - 58
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a7/
%F MM3_2000_4_1_a7
Mirko Lepović. On Eigenvalues and Main Eigenvalues of a Graph. Mathematica Moravica, Tome 4 (2000) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a7/