On (n,m)-Groups
Mathematica Moravica, Tome 4 (2000) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The main result of the article is the following proposition. Let $n\geq 2m$ and let $(Q,A)$ be an $(n,m)$-groupoid. Then, $(Q,A)$ is an $(n,m)$-group iff the following statements hold: $(i)$ $(Q,A)$ is an $\langle 1,n-m+1\rangle$- and $\langle 1,2\rangle$-associative $(n,m)$-groupoid [or $\langle 1,n-m+1\rangle$- and $\langle n-m,n-m+1\rangle$-associative $(n,m)$-groupoid]; and $(ii)$ for every $a_{1}^{n}\in Q$ there is at least one $x_{1}^{m}\in Q^{m}$ and at least one $y_{1}^{m}\in Q^{m}$ such that the following equalities hold $A(a_{1}^{n-m},x_{1}^{m}) = a_{n-m+1}^{n}$ and $A(y_{1}^{m},a_{1}^{n-m})=a_{n-m+1}^{n}$. [For $n=2$ and $m=1$ it is a well known characterization of a group. See, also 3.2]
Mots-clés : (n;m)-groupoids, (n;m)-groups
@article{MM3_2000_4_1_a15,
     author = {Janez U\v{s}an},
     title = {On {(n,m)-Groups}},
     journal = {Mathematica Moravica},
     pages = {115 - 118},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a15/}
}
TY  - JOUR
AU  - Janez Ušan
TI  - On (n,m)-Groups
JO  - Mathematica Moravica
PY  - 2000
SP  - 115 
EP  -  118
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a15/
ID  - MM3_2000_4_1_a15
ER  - 
%0 Journal Article
%A Janez Ušan
%T On (n,m)-Groups
%J Mathematica Moravica
%D 2000
%P 115 - 118
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a15/
%F MM3_2000_4_1_a15
Janez Ušan. On (n,m)-Groups. Mathematica Moravica, Tome 4 (2000) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a15/