On (n,m)-Groups
Mathematica Moravica, Tome 4 (2000) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The main result of the article is the following proposition. Let $n\geq 2m$ and let $(Q,A)$ be an $(n,m)$-groupoid. Then, $(Q,A)$ is an $(n,m)$-group iff the following statements hold: $(i)$ $(Q,A)$ is an $\langle 1,n-m+1\rangle$- and $\langle 1,2\rangle$-associative $(n,m)$-groupoid [or $\langle 1,n-m+1\rangle$- and $\langle n-m,n-m+1\rangle$-associative $(n,m)$-groupoid]; and $(ii)$ for every $a_{1}^{n}\in Q$ there is at least one $x_{1}^{m}\in Q^{m}$ and at least one $y_{1}^{m}\in Q^{m}$ such that the following equalities hold $A(a_{1}^{n-m},x_{1}^{m}) = a_{n-m+1}^{n}$ and $A(y_{1}^{m},a_{1}^{n-m})=a_{n-m+1}^{n}$. [For $n=2$ and $m=1$ it is a well known characterization of a group. See, also 3.2]
Mots-clés :
(n;m)-groupoids, (n;m)-groups
@article{MM3_2000_4_1_a15, author = {Janez U\v{s}an}, title = {On {(n,m)-Groups}}, journal = {Mathematica Moravica}, pages = {115 - 118}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a15/} }
Janez Ušan. On (n,m)-Groups. Mathematica Moravica, Tome 4 (2000) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a15/