A Note on the Post's Coset Theorem
Mathematica Moravica, Tome 4 (2000) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper a proff o Post's Coset Theorem is presented. The proof uses from Theory of $n$-groups, besides the definition of $n$-groups ([1], 1.1), the description of $n$-group as an algebra with the laws of the type $\langle n,n-1,n-1\rangle$ ([8], 1.2, 1.3)
Mots-clés : $n$-groupoids, $n$-semigroups, $n$-quasigroups, $n$-groups, $\{1;n\}$-neutral operations on $n$-groupoids, inversing operation on $n$-group
@article{MM3_2000_4_1_a14,
     author = {Janez U\v{s}an and Mali\v{s}a \v{Z}i\v{z}ovi\'c},
     title = {A {Note} on the {Post's} {Coset} {Theorem}},
     journal = {Mathematica Moravica},
     pages = {109 - 114},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a14/}
}
TY  - JOUR
AU  - Janez Ušan
AU  - Mališa Žižović
TI  - A Note on the Post's Coset Theorem
JO  - Mathematica Moravica
PY  - 2000
SP  - 109 
EP  -  114
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a14/
ID  - MM3_2000_4_1_a14
ER  - 
%0 Journal Article
%A Janez Ušan
%A Mališa Žižović
%T A Note on the Post's Coset Theorem
%J Mathematica Moravica
%D 2000
%P 109 - 114
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a14/
%F MM3_2000_4_1_a14
Janez Ušan; Mališa Žižović. A Note on the Post's Coset Theorem. Mathematica Moravica, Tome 4 (2000) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a14/