A Note on the Post's Coset Theorem
Mathematica Moravica, Tome 4 (2000) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper a proff o Post's Coset Theorem is presented. The proof uses from Theory of $n$-groups, besides the definition of $n$-groups ([1], 1.1), the description of $n$-group as an algebra with the laws of the type $\langle n,n-1,n-1\rangle$ ([8], 1.2, 1.3)
Mots-clés :
$n$-groupoids, $n$-semigroups, $n$-quasigroups, $n$-groups, $\{1;n\}$-neutral operations on $n$-groupoids, inversing operation on $n$-group
@article{MM3_2000_4_1_a14, author = {Janez U\v{s}an and Mali\v{s}a \v{Z}i\v{z}ovi\'c}, title = {A {Note} on the {Post's} {Coset} {Theorem}}, journal = {Mathematica Moravica}, pages = {109 - 114}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a14/} }
Janez Ušan; Mališa Žižović. A Note on the Post's Coset Theorem. Mathematica Moravica, Tome 4 (2000) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a14/