On p-Semigroups
Mathematica Moravica, Tome 4 (2000) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Generalizing the notion of anti-inverse semigroup, we introduce the notion of $p$-semigroup, for arbitrary $p\in N$. We prove that every $p$-semigroup is covered by groups, classes of which are completely described.
Mots-clés : semigroup, union of groups, p-semigroups
@article{MM3_2000_4_1_a1,
     author = {Vjekoslav Budimirovi\'c},
     title = {On {p-Semigroups}},
     journal = {Mathematica Moravica},
     pages = {5 - 20},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a1/}
}
TY  - JOUR
AU  - Vjekoslav Budimirović
TI  - On p-Semigroups
JO  - Mathematica Moravica
PY  - 2000
SP  - 5 
EP  -  20
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a1/
ID  - MM3_2000_4_1_a1
ER  - 
%0 Journal Article
%A Vjekoslav Budimirović
%T On p-Semigroups
%J Mathematica Moravica
%D 2000
%P 5 - 20
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a1/
%F MM3_2000_4_1_a1
Vjekoslav Budimirović. On p-Semigroups. Mathematica Moravica, Tome 4 (2000) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2000_4_1_a1/