A NOTE ON THE RANGE OF COMPACT MULTIPLIERS OF MIXED-NORM SEQUENCE SPACE
Mathematica Moravica, Tome 3 (1999) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this note we consider the range as a range space of compact multipliers of mixed norm sequence spaces $l^{p,q}, 0 \leqp,q \leq \infty$. In contrast to the general case we show that a compact multiplier always remain compact under reduction of the final space to the range space of multipliers.
@article{MM3_1999_3_1_a4,
     author = {Ivan Jovanovi\'c and Vladimir Rako\v{c}evi\'c},
     title = {A {NOTE} {ON} {THE} {RANGE} {OF} {COMPACT} {MULTIPLIERS} {OF} {MIXED-NORM} {SEQUENCE} {SPACE}},
     journal = {Mathematica Moravica},
     pages = {29 - 32},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a4/}
}
TY  - JOUR
AU  - Ivan Jovanović
AU  - Vladimir Rakočević
TI  - A NOTE ON THE RANGE OF COMPACT MULTIPLIERS OF MIXED-NORM SEQUENCE SPACE
JO  - Mathematica Moravica
PY  - 1999
SP  - 29 
EP  -  32
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a4/
ID  - MM3_1999_3_1_a4
ER  - 
%0 Journal Article
%A Ivan Jovanović
%A Vladimir Rakočević
%T A NOTE ON THE RANGE OF COMPACT MULTIPLIERS OF MIXED-NORM SEQUENCE SPACE
%J Mathematica Moravica
%D 1999
%P 29 - 32
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a4/
%F MM3_1999_3_1_a4
Ivan Jovanović; Vladimir Rakočević. A NOTE ON THE RANGE OF COMPACT MULTIPLIERS OF MIXED-NORM SEQUENCE SPACE. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a4/