NOTE ON (n,m)-GROUPS
Mathematica Moravica, Tome 3 (1999) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Among the results of the paper is the following proposition. Let $2m \leq n 3m$ and let $(Q,A)$ be an (n,m)-groupoid $(n,m \in N)$. Then, $(Q,A)$ is an (n,m)-group iff there are mappings $^{-1}$ and $e$ respectively of the sets $Q^{n-m}$ and $Q^{n-2m}$ into the set $Q^{m}$ such that the following laws hold in the algebra $(Q,A,^{-1},e)$:
$A(A(x_1^n),x_{n+1}^{2n-m})=A(x_1,A(x_2^{n+1),x_{n+2}^{2n-m})$, $A(A(x_1^n),x_{n+1}^{2n-m})=A(x_1^{n-m},A(x_{n-m+1}^{2n-m}))$, $A(x_1^m, a_1^{n-2m}, e(a_1^{n-2m}))=x_1^m$ and $A(x_1^m, a_1^{n-2m}, (a_1^{n-2m},x_1^m)^{-1})=e(a_1^{n-2m})$.
@article{MM3_1999_3_1_a19, author = {Janez U\v{s}an}, title = {NOTE {ON} {(n,m)-GROUPS}}, journal = {Mathematica Moravica}, pages = {127 - 139}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a19/} }
Janez Ušan. NOTE ON (n,m)-GROUPS. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a19/