NOTE ON (n,m)-GROUPS
Mathematica Moravica, Tome 3 (1999) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Among the results of the paper is the following proposition. Let $2m \leq n 3m$ and let $(Q,A)$ be an (n,m)-groupoid $(n,m \in N)$. Then, $(Q,A)$ is an (n,m)-group iff there are mappings $^{-1}$ and $e$ respectively of the sets $Q^{n-m}$ and $Q^{n-2m}$ into the set $Q^{m}$ such that the following laws hold in the algebra $(Q,A,^{-1},e)$: $A(A(x_1^n),x_{n+1}^{2n-m})=A(x_1,A(x_2^{n+1),x_{n+2}^{2n-m})$, $A(A(x_1^n),x_{n+1}^{2n-m})=A(x_1^{n-m},A(x_{n-m+1}^{2n-m}))$, $A(x_1^m, a_1^{n-2m}, e(a_1^{n-2m}))=x_1^m$ and $A(x_1^m, a_1^{n-2m}, (a_1^{n-2m},x_1^m)^{-1})=e(a_1^{n-2m})$.
@article{MM3_1999_3_1_a19,
     author = {Janez U\v{s}an},
     title = {NOTE {ON} {(n,m)-GROUPS}},
     journal = {Mathematica Moravica},
     pages = {127 - 139},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a19/}
}
TY  - JOUR
AU  - Janez Ušan
TI  - NOTE ON (n,m)-GROUPS
JO  - Mathematica Moravica
PY  - 1999
SP  - 127 
EP  -  139
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a19/
ID  - MM3_1999_3_1_a19
ER  - 
%0 Journal Article
%A Janez Ušan
%T NOTE ON (n,m)-GROUPS
%J Mathematica Moravica
%D 1999
%P 127 - 139
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a19/
%F MM3_1999_3_1_a19
Janez Ušan. NOTE ON (n,m)-GROUPS. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a19/