A NOTE ON TOPOLOGICAL n-GROUPS
Mathematica Moravica, Tome 3 (1999) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper is proved the following proposition. Let $(Q,A)$ be an n-group, $^{-1}$ its nversing operation, $n \geq 2$ and $Q$ is equipped with a topology $O$. Also let $^{-1}A(x,a_1^{n-2},y)=z \iff A(z,a_1^{n-2},y)=x$ (def) and $^{-1}A(x,a_1^{n-2},y)=z \iff A(x,a_1^{n-2},z)=y$ (def) for all $x,y,z \in Q$ and for every sequence $a_1^{n-2}$ over $Q$. Then the following statements are equivalent: (i) the n-ary operation $A$ is continuous in $O$ and the (n-1)-ary operation $^{-1}$ is continuous in $O$; (ii) the n-ary operation $^{-1}A$ is continuous in $O$; and (iii) the n-ary operatin $A^{-1}$ is continuous in $O$. [See, also Remark 2.2.]
@article{MM3_1999_3_1_a17,
     author = {Janez U\v{s}an},
     title = {A {NOTE} {ON} {TOPOLOGICAL} {n-GROUPS}},
     journal = {Mathematica Moravica},
     pages = {111 - 115},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a17/}
}
TY  - JOUR
AU  - Janez Ušan
TI  - A NOTE ON TOPOLOGICAL n-GROUPS
JO  - Mathematica Moravica
PY  - 1999
SP  - 111 
EP  -  115
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a17/
ID  - MM3_1999_3_1_a17
ER  - 
%0 Journal Article
%A Janez Ušan
%T A NOTE ON TOPOLOGICAL n-GROUPS
%J Mathematica Moravica
%D 1999
%P 111 - 115
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a17/
%F MM3_1999_3_1_a17
Janez Ušan. A NOTE ON TOPOLOGICAL n-GROUPS. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a17/