CONTINUITY OF GENERAL J-CONVEX FUNCTIONS
Mathematica Moravica, Tome 3 (1999) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we continue the study of the general J-convex functions, which are introduced in our former paper (Tasković, Math. Japonica, 37 (1992), 367-372). We prove that if $D \subset \mathbb{R}^n$ a convex and open set, and if $f: D \to \mathbb{R}$ is a general J-inner function with the property of local oscillation in $D$, then it is continuous in $D$. Since every J-convex function (also an additive function) is general J-inner function, we obtain as a particular case of the preceding statement the result of F. Bernstein and G. Doetsch.
@article{MM3_1999_3_1_a15,
     author = {Milan Taskovi\'c},
     title = {CONTINUITY {OF} {GENERAL} {J-CONVEX} {FUNCTIONS}},
     journal = {Mathematica Moravica},
     pages = {97 - 104},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a15/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - CONTINUITY OF GENERAL J-CONVEX FUNCTIONS
JO  - Mathematica Moravica
PY  - 1999
SP  - 97 
EP  -  104
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a15/
ID  - MM3_1999_3_1_a15
ER  - 
%0 Journal Article
%A Milan Tasković
%T CONTINUITY OF GENERAL J-CONVEX FUNCTIONS
%J Mathematica Moravica
%D 1999
%P 97 - 104
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a15/
%F MM3_1999_3_1_a15
Milan Tasković. CONTINUITY OF GENERAL J-CONVEX FUNCTIONS. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a15/