GENERALIZATION OF HARDY-LITTLEWOOD-PÓLYA MAJORIYATION PRINCIPLE
Mathematica Moravica, Tome 3 (1999) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This paper continues the study of the general convex functions. In this paper we extension our the former objects of the function in contact and of the function in circled contact. The following main result is proved: Let $J \subset R$ be an open interval and let $x_i,y_i \in J$ $(i=1,\dots,n)$ be real numbers such that fulfilling $x_i \geq \cdots \geq x_n$, $y_i \geq \cdots \geq y_n$. Then, a necessary and sufficient condition in order that $\sum_{i=1}^{n} f(x_i) \geq 2\sum_{i=1}^{n} f(y_i)-n max{f(a), f(b), g(f(a), f(b))}$ holds for every general convex function $f: J \to R$ which is in contact with function $g: f(J)^2 \to R$ and for arbitrary $a,b \in J$ ($a \leq x_i \leq b$ for $i=1,\dots,n$), is that $\sum_{i=1}^{k} y_i \leq \sum_{i=1}^{k} x_i$ $k=1, \dots, n-1$, $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_i$.
@article{MM3_1999_3_1_a13,
     author = {Milan Taskovi\'c},
     title = {GENERALIZATION {OF} {HARDY-LITTLEWOOD-P\'OLYA} {MAJORIYATION} {PRINCIPLE}},
     journal = {Mathematica Moravica},
     pages = {83 - 92},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a13/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - GENERALIZATION OF HARDY-LITTLEWOOD-PÓLYA MAJORIYATION PRINCIPLE
JO  - Mathematica Moravica
PY  - 1999
SP  - 83 
EP  -  92
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a13/
ID  - MM3_1999_3_1_a13
ER  - 
%0 Journal Article
%A Milan Tasković
%T GENERALIZATION OF HARDY-LITTLEWOOD-PÓLYA MAJORIYATION PRINCIPLE
%J Mathematica Moravica
%D 1999
%P 83 - 92
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a13/
%F MM3_1999_3_1_a13
Milan Tasković. GENERALIZATION OF HARDY-LITTLEWOOD-PÓLYA MAJORIYATION PRINCIPLE. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a13/